Self cooled lithium walls

Dick Majeski PPPL

Reactor design

- Present tungsten wall concepts for reactors are very large and complex
- High leverage advances in reactor design would be:
 - Increased confinement
 - Increased beta
 - » Reduced/no disruptivity
 - Decreased complexity
 - » Fewer/no interlocking coils
 - » Reduced feedback requirements
 - Higher wall power handling
 - Reduced in-vessel maintenance
- What innovation would best advanced these goals?

Self-cooled lithium walls (1)

- Potential confinement increases
 - Experimental evidence for confinement increases from TFTR, CDX-U, NSTX
 - Theoretical analyses have been performed by Zakharov, Krasheninnikov
 - » Z&K: very hot edge removes instability ∇T_e drive
 - » Catto and Hazeltine have explored the extremes of tokamak confinement with no ∇T_e drive, minor modifications to distribution function
 - Would be characterized by *electron* neoclassical confinement
- Potential beta increases
 - Theoretical analyses: Zakharov for tokamaks (again), Hegna for Forest's rotating wall experiment
 - Experimental evidence: MHD stabilization of a Z-pinch by rotating (solid) walls was successfully demonstrated (Forest)
 - » Liquid metal flow pattern would be better counterflowing walls inhibit mode locking

Self-cooled lithium walls (2)

- Potential simplifications
 - Rely on the wall for stabilization. Could relax plasma shaping requirements in no need for closely coupled PF coils? No interlocking coils? is relaxed feedback requirements on PF?
 - Flowing lithium wall carries the plasma heat. No helium cooling system; no separate in vessel wall cooling system at all.
 - No divertor? Lithium provides fuel particle pumping. Divertor Hmode with full lithium walls is an oxymoron. Fast flowing walls have good heat removal capability. Only remaining function for a divertor is helium pumping – can we produce sufficient helium pumping without a divertor (or without much of a divertor)?
- Power handling
 - Could eliminate the need to concentrate power outflow at a divertor. Distributed power at the wall is a few MW/m².
- Reduced in-vessel maintenance
 - Could be a much smaller overall system with many fewer components

So what are we doing?

- Confinement explorations. Not much else.
- Lithium coated copper walls on LTX may inform beta limits
 - Provides a conductor within 0.5 cm (average) of the plasma LCFS
 - But no flow
- Some work on thermal transfer in liquid metals, in a high(ish) magnetic field
 - Has modest impact. Recall that we want fast flow for MHD stabilization, so enhanced thermal transfer primarily impacts wall power density limit, which is already adequate in the conduction limit.
- Some work on fast LM flows in a magnetic field
 - MTOR, results were encouraging, but relatively narrow channels. Fully axisymmetric flow not tested.

Common objections

- What about a hot blanket for high thermal efficiency?
 - For a fast flowing wall, heated (active) depth facing the plasma is thin compared to depth of flow (conduction limit)
 - A hot (600C) blanket radiatively heats flow from the guide wall side
 - This heat load is small compared to the plasma
 - Reduced thermal efficiency for the alpha power (\$\infty wall) would reduce *net* electricity by ~5%
- Tritium inventory:
 - Broad temperature profile, need for efficient fueling, very good particle confinement all imply a high tritium burnup fraction
 - Small demonstration reactor (say 0.5 GW fusion) and a high burnup fraction imply tritium handling requirements can be ~1 kg/day
 - 10 kg site inventory limit implies a 10 day turnaround for tritium removal from the lithium

Other common objections

- It's crazy.
 - Answer: need to demonstrate wall adhered LM flows
 - » Demonstration in liquid lithium requires a significant toroidal test stand