June 20-22 (2012) PFC Annual Meeting - Princeton NJ

TMAP-7 SIMULATION OF D₂ THERMAL RELEASE DATA FROM BE CO-DEPOSITED LAYERS

M. J. BALDWIN, T. SCHWARZ-SELINGER*, J. YU, <u>R. P. DOERNER</u>

PISCES Laboratory, UCSD *IPP- Garching, Germany

[Special thanks to Glen Longhurst, U. of Utah]

Introduction

- ITER will have 700 sq. m of Be first wall and start-up limiters.
- Nuclear licensing requires low T in vessel inventory, 700 g (mobilizable).
 - T accumulation in ITER will be driven by co-deposition.
- PISCES experiments contribute to the understanding of the nature of T inventory buildup & strategies for reduction.
- Inventory control options:
 - Bulk PFC bake-out, 513 K (main wall), 623 K (divertor). HOW LONG TO BAKE?
 - 2) Transient thermal loads, rapid (< 10 ms) surface heating to high *T* during controlled plasma termination. HOW MUCH IS RELEASED?
 - 3) Remote probes (inefficient, last resort).
 - 4) Component replacement (when all else fails).
- Efficacy of 1) & 2) examined through experiment and modeling. REQUIRES IDENTICAL SAMPLES.

GA magnetron sputter coater produces batches of 'identical' co-deposits

Utilizes 3, 100 W Be sputter guns, operated at 6 mTorr in 80% Ar, 20 % D₂

Be deposition rate 2.5 x10¹⁵ cm⁻²s⁻¹ Be-D co-deposited layers 1 µm thick

Bake-out Exp. $T_{\rm dep}$ < 323 K

Rotating pan. 2 mm dia W spheres.

Transient Exp. $T_{\rm dep} \sim 500 \ {\rm K}$

(not flashed) 2.5 mm dia. Be-D codeposits Laser is aligned to spot.

Fast pyrometer, also aligned to spot. measures surface temperature.

A 50 J, 10 msec YAG laser is used to 'flash' codeposits simulating the radiation pulse during a controlled plasma shutdown in ITER

UCSD | Mechanical and Jacobs Aerospace Engineering

Experiments

- Special holder designed to give good TC contact to balls
- D inventory is measured using TDS.
- p_{D2} time profile is calibrated against D_2 leak.
- *p*_{D2} time integral a measure of retained D in co-deposit.

Modeling (TMAP 7)

Be layer thickness & trap concentration input come from experimental measurements.

UCSD | Mechanical and Jacobs | Aerospace Engineering

Base modeling co-deposit D₂ release.

Base modeling co-deposit D₂ release.

 Good agreement between TMAP single Be layer model (ii) and TDS data acquired with different heating rates in the range 0.1 – 1.0 K.

Using TMAP to model Bake-Out Exp.

TMAP models bake-out, but k_r must be adjusted as in Longhurst et al. JNM 258–263 (1998) 640, by the factor, $[1+exp(c_D/A)]$, where c_D is the D conc. in the near surface, and A is a constant. Sharp fall (F) and rise (R) are better modeled as a result.

UCSD | Mechanical and Jacobs | Aerospace Engineering

D Inv. left after bake: Exp & TMAP.

- Experiment (symbols) & TMAP (solid line) shows remaining D in 1 μm thick co-deposit falling significantly in ~1 day at ITER bake-out temperatures of 513 K & 623 K.
- TMAP output (dashed lines) are other layer thicknesses, 0.2, 5 and 10 μm.
- Thick layers require longer bake-out in TMAP simulations as a consequence of high trap concentration (analogous to reduction in diffusivity).
- Bakes longer than ~1 day are increasingly ineffective.

D Inv. left after thermal transient to 1000 K for 10 ms: Exp & TMAP.

- Remaining D inventory in codeposits (normalized) remains high following a 10 ms laser pulse for layer temperature up to 1000 K.
- TMAP simulation agrees reasonably well with (full line) experiment.
- Dashed lines show TMAP output for other co-deposit thicknesses of 0.2, 5 and 10 μm.
- Again, thicker co-deposits desorb less

Summary

- The efficacy of 1) bake-out at 513 & 623 K, and 2) thermal transient (10 ms) loading to up to 1000 K, is explored for reducing D inventory in 1 μm thick Be–D codeposited layers.
- A single layer TMAP model utilizing traps with activation energies, 0.80 & 0.98 eV yields good agreement with measured codeposit release behavior.
- TMAP modeling results agree well with release behavior over a span of eight orders of magnitude in heating rate, providing some confidence in the ability to extrapolate the modeling to other codeposit thicknesses.
- TMAP modeling suggests that thick built-up co-deposits will hinder ITER inventory control, and that bakes are more effective in reducing inventory than higher temperature transient thermal loads.
- Thickness prediction will be confirmed by additional experiments.