Kinetic-Kinetic Plasma-Neutral Simulations with XGC0-DEGAS2*

D. P. Stotler

Princeton Plasma Physics Laboratory

2012 Plasma Facing Components Meeting PPPL June 18 – 22, 2012

*This work supported by US DOE contract no. DE-AC02-09CH114466.

Outline

- Background on XGC0 kinetic neoclassical code
- Introduction to XGC0-DEGAS2 kinetic-kinetic plasma-neutral code
- Example application: core particle fueling

What is Role of Neoclassical Processes in Pedestal?

- ITER performance sensitive to height of H-mode pedestal
 ⇒ extensive efforts to understand governing processes.
- Neoclassical effects significant in H-mode due to reduced anomalous transport.
- Pedestal characteristics complicate analytic model development:
 - Gradient scale lengths \sim banana orbit width,
 - Proximity of separatrix,
 - Loss holes in ion velocity space.
- \Rightarrow kinetic, guiding center ion neoclassical PIC code, XGC0 [Chang2004].

Physics Capabilities and Accomplishments of XGC0

- Effect of consistent E_r & collisions on pedestal examined in [Chang 2004],
- Demonstrated pedestal build up with simplified neutral routine.
- Subsequent extensions: kinetic electrons, impurity ions, logical sheath, anomalous transport models, RMP.
- Recent applications:
 - ELM cycle by coupling to M3D [Park 2007],
 - Divertor heat load width [Pankin 2010].
- Planned upgrades: multiple charge state impurities, 2-D ϕ .

Improve XGC0 Neutral Treatment with DEGAS2 Routine

- Bring XGC0 neutral model up to level of B2-EIRENE, UEDGE-DEGAS2, etc.
 - Resolve neutral quantities throughout vacuum vessel,
 - Neutral sources & PMI at wall,
 - Use DEGAS2's atomic physics machinery & database,
 - Synthetic diagnostics, e.g., visible cameras.
- Kinetic electrons & impurities not enabled in XGC0-DEGAS2 since verification is ongoing.

Approach to Kinetic-Kinetic Plasma-Neutral Coupling

- Fluid plasma kinetic neutral coupling: latter computes plasma sources due to neutrals,
 - \Rightarrow "right hand sides" of plasma equations.
- Kinetic data lost \Rightarrow need different mechanism for kinetic plasma code.
- Fully kinetic Direct Simulation Monte Carlo requires too many computational resources.
- Instead use "test particle Monte Carlo":
 - Developed for handling nonlinear collision operator in gas simulations.
 - Kinetic test particles collide with background characterized by specified distribution.
 - Distribution updated iteratively to convergence.
 - Accuracy depends on adequacy of chosen distribution.

"Test Particle Monte Carlo" Technique Implemented in Two Complementary Collision Routines

Consistent, Time-Dependent Recycling in XGC0-DEGAS2

- XGC0 ion current to boundary \Rightarrow recycling neutral source for DEGAS2.
 - Poloidal distribution periodically updated.
 - Integrated source current = total lost ion current since last DEGAS2 call.
- Will be adding lost ion energy distribution
 ⇒ sample recycled ions & can use detailed PMI models.
- "PMI" here: 3 eV D atoms with cosine distribution.
- DEGAS2 routine invoked every 15 μ s here,
 - \Rightarrow neutrals evolved in time over interval,
 - Moments of neutral distribution time averaged.
 - Atoms left in volume at end of interval can be continued in next.

Vessel Filling Triangular Mesh with User Controlled Boundary Discretization

- User specifies minimum spacing on boundary and Use E narrow flux grid around strike points. mesh
- Boundary to be used by Carre offset by 5 mm.
- Use DG & Carre to generate flux surface mesh for given EFIT.
- Tile remainder with triangles via Triangle routine.

Demonstration of Coupled XGC0-DEGAS2 Code

- Standard XGC0 test case:
 DIII-D shot 96333 3300 ms.
- Initial pedestal density $5 \times 10^{19} \text{ m}^{-3}$ & temperature 1 keV.
- Lower T_e based on more recent DIII-D data.
- Only other adjustable parameters:
 - 90% recycling coefficient,
 - Collisionless gyroviscosity coefficient 5 \times 10⁻² m²/s.
- Profiles evolved for 20 ion transit times = 1.56 ms.
- NOTE: for validation, would add: heat source, kinetic electrons, logical sheath, turbulent diffusion.

Compare Runs with Consistent, Divertor Peaked & Poloidally Uniform Recycling

Divertor Peaked Source: 9% core ionization

Uniform Source: 47% core ionization

Summary

- DEGAS2 based Monte Carlo neutral routine coupled to guiding center, ion-electron-neutral neoclassical PIC code XGC0,
 - \Rightarrow Kinetic-kinetic plasma-neutral transport code.
 - Detailed atomic physics & PMI available via DEGAS2.
 - Neutral recycling source determined from XGC0 ion currents to material surfaces.
- Demonstrate with example DIII-D H-mode particle fueling simulations:
 - Poloidally uniform "puff & pump" source yields much higher core ionization fraction relative to consistent, divertor peaked source.