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 Understand/control heat-flux distribution to PFCs

« Assessing impact of sputtered/evaporated material
on edge plasma properties
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1. NSTX shows substantial divertor heat-flux
reduction with snowflake configuration and Li

NSTX: factor of 3 heat-flux reduction on the divertor plate
[V.A. SoukhanovskKii et al, Nucl. Fusion 51 (2011) 012001]
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Simple slab model of scrape-off layer/divertor used to
show strong effect of lithium source near strike point

Here only consider effect of Li on detachment;
snowflake adds an additional effect
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Simulations to follow use 2D UEDGE with noncoronal, multi-charge-state

lithium and deuterium
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Low-energy peak in lithium emissivity has an
iImportant impact on hydrogen divertor plasma

Coronal equilibrium model
for qualitative argument
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Low-energy peak in lithium emissivity has an
iImportant impact on hydrogen divertor plasma

Detached plasma region
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Increasing Li plate source from 16 A to 20 A yields
detached divertor in ~1 ms; not steady-state

UEDGE

simulations
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2. ELM heat load for snowflake: depends on both time
of energy deposition time (t4,,) and radial spreading

 Temperature rise on divertor scales as

Energy/(Area*ty,,'?)

- Snowflake divertor predicted to have

- larger 1., owing to longer midplane-divertor connection length

 larger divertor deposition area from radial spreading
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TCV has also formed snowflake divertor & shows
ELM power being spread to additional divertor leg

TCV results from H. Reimedes et al., APS-DPP 2011, and PSI 2012

o is separation of x-points
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TCV shows ELM power being spread to additional
divertor leg as snowflake configuration is approached
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L-mode: activation of SP3 at
0~ 0.2 (Pgp3/P5p1~10%)
H-mode: in continuous
sigma scan (from previous
session), activation of SP3
during ELMs at a larger
value of ¢ than in L-mode
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Enlarged region with small B, near magnetic null
point removes usual toroidal stabilizing effect

See D. Ryutov et al., Contrib.
Plasma Physics 52 (2012) 539

Flute mode growth rate
L ~[(oPlor)/(mnR)]"?,

m, ion mass; P, pressure; n;, ion
density.

Turbulence eddy turn-over time t,
& parallel convection time 7, give

T;”/T;e ~ (BP/Bpm)(aZ/RA)UZ ,

Bs, B, are toroidal & poloidal
magnetic fields at midplane
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Full divertor geometry used to compare a
standard X-point divertor and snowflake-plus

Standard X-point divertor geometry Snowflake plus divertor geometry
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Poloidal plasma beta substantially exceeds
unity for snowflake, especially during ELMs

 When poloidal beta > 1, pressure-driven flute modes can be unstable
- Estimated turbulent mixing greatly exceeds parallel ELM transit time

* Result should be broadening of ELM and 4 divertor-leg power sharing

White dash line is beta = 1 contour
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3. Plasma heat & particle fluxes observed to be
carried by filamentary “blobs” added to UEDGE
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BOUT simulates 3D drift instabilities (filamentary “blobs”);
energy flux includes convection/conduction components

3D BOUT density fluctuations
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Advances made in 3 plasma heat-flux modeling areas

1. Lithium radiation from sputtered/evaporated at divertor plate
could induce divertor plasma detachment

2. Snowflake divertors can significantly reduce ELM heat loads
by null-point mixing and increased connection length

3. Advances made in blob model within UEDGE and beginning
higher-fidelity 3D BOUT simulation of wall fluxes
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Even without null-point mixing, divertor heat profiles
show lower peak heat flux for snowflake

Standard X-point divertor Snowflake-plus divertor
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Combining null-point mixing and field-line length effect underway
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1D: Peak divertor heat flux is reduced as the column
length increases — total energy is a constant

Divertor heat flux Fraction of ELM energy lost at plate
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Surface-temperature rise ~ (T, )2 decreases by ~3
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