Materials Science & Technology Research Opportunities Now and in the ITER Era: A Focused Vision on Compelling Fusion Nuclear Science Challenges

> Presented by Steve Zinkle Fusion Materials Science and PFC coordination meeting Princeton, NJ June 18-20, 2012

FESAC Materials sciences & technology subcommittee

Materials Degradation

Name	Institution
Steve Zinkle*(chair)	Oak Ridge National Lab
Rick Kurtz	Pacific Northwest National Lab
Brian Wirth	Univ. Tennessee-Knoxville
Jake Blanchard	University of Wisconsin
Peter Lee	Florida State Univ.

Plasma-Materials Interactions

Name	Institution				
Chuck Kessel	Princeton Plasma Physics Lab				
Rich Callis*	General Atomics				
Dennis Whyte	Massachusetts Inst. of Technology				
Richard Nygren	Sandia National Labs- Albuquerque				
George Tynan	Univ. California-San Diego				

Harnessing Fusion Power

Name	Institution
Neil Morley	Univ. California-Los Angeles
Farrokh Najmabadi*	Univ. California-San Diego
Scott Willms	Los Alamos National Lab /ITER
Kathy McCarthy*	Idaho National Lab

*FESAC member

FESAC charge on Materials science & technology

- "What areas of research in materials sciences and technology provide <u>compelling opportunities for US researchers in the near term and in the ITER era? Please focus on research needed to fill gaps in order to create the basis for a Demo and specify technical requirements in <u>greater detail than provided in the MFE ReNeW (Research Needs</u> Workshop) report. Also, your assessment of the risks associated with research paths with different degrees of <u>experimental study vs.</u> <u>computation</u> as a proxy to experiment will be of value."</u>
 - Consider near- and long-term (~0 to 5, 5-15, and 15+ years); what can be done with existing facilities, new facilities, and emergent international facilities
 - Experiment & the role of computation: Identify 2-3 paths with varying emphases on massively parallel computing–what are the risks associated with each path?
 - Materials defined to encompass nuclear (dpa's); non-nuclear (pmi); differential (single-effects) and integrated (multiple-effects) phenomena; harnessing fusion power

The panel focused on three major science themes

- Harnessing Fusion Power
- Conquering Degradation of Materials and Structures
- Taming the Plasma-Materials Interface

	https://aries.ucsd.edu/FESAC_MAT/								
	EESAC Material Panel								
	FLSAC Material Pallel								
	Home	Members	Charge	Community Input	Private				
			Annoucements						
	EFSAC materials	sciences subcommittee	seeks community inn	ı t					
	The response to a shared from the Office of Colones to peace "what prope of metavials esigneds and to the share's response to								
	compelling opportunities for US researchers in the near term and in the ITER era", a FESAC subcommittee consisting								
	of 14 scientists is evaluating research needs to bridge current knowledge gaps in order to establish the scientific basis for a Demonstration power plant. The subcommittee evaluation is scheduled to be completed by January 31, 2012.								
	Research community input is solicited on key scientific challenges that need to be resolved, particularly in the								
	following topical areas: Plasma-materials interactions, nuclear degradation of materials and structures, and fusion								
	resolved, rather than technical specifications of facility(ies) that might be important for resolving current engineering								
	science barriers.								
	Short white papers or to the FESAC materia	r suggested scientific ques Ils sciences web site (http:	tions or issues to be cons ://aries.ucsd.edu/fesac_m	idered by the subcommitt nat/) by sending the contri	ee can be submitted ibution to Farrokh				
	Najmabadi (fnajmaba subcommittee chair.	idi@ucsd.edu). Questions Steve Zinkle (zinklesi@ori	regarding the scope of iss	sues to be evaluated can b	e submitted to the				
21	white naner	s and 5 emails	s received and	discussed					
					food modiling				
15	To teleconference (3 invited tarks) and two 2-day face-to-face meetings								

Overview of Evaluation Process

- Identification of scientific grand challenges
- Assessment of current capabilities to address grand challenges (gaps and opportunity analysis)
 - Technology readiness levels used to quantify current state of knowledge
- Identification of recommended compelling research opportunities
 - Scientific challenge
 - Impact and urgency
 - Opportunity for US leadership

Identification of Grand Science Challenges Provided the Scientific Foundation for the Evaluation Examples for Harness Fusion Energy

- H1. Develop a predictive capability for the highly non-linear thermo-fluid physics and the transport of tritium and corrosion products in tritium breeding and power extraction systems.
 - Can tritium be extracted from hot PbLi with the required high efficiency to limit tritium permeation below an acceptable level?
 - Can we simulate the 3-D MHD effects in flowing liquid breeders to the degree necessary to fully predict the temperature, temperature gradients and stress states of blanket components and materials?

Tritium Science & Technology for Fusion Reactor

T. Tanabe, ISFNT, Portland, 2011

MHD forces in flowing liquid metal coolants in MFE blankets can exceed normal viscous and inertial forces by >5 orders of magnitude

3D MHD simulation of flow distribution to 3 blanket channels from a common manifold

With B field

 Coolant flow is uniform within three channels

No B field

 Coolant flow is concentrated in center channel

Identification of Grand Science Challenges Provided the Scientific Foundation for the Evaluation

Examples for Conquering Degradation to Materials and Structures

- D1. Understand and devise mitigation strategies for deleterious microstructural evolution and property changes that occurs to materials exposed to high fusion-neutron fluence (dpa and H, He transmutations)
- D3. Comprehend and control tritium permeation, trapping, and retention in neutron radiation-damaged materials
 - Are materials development strategies for fusion neutron radiation resistance incompatible with minimizing tritium trapping?
- D4. Understand the fundamental mechanisms controlling chemical compatibility of materials exposed to coolants and/ or breeders in strong temperature and electro-magnetic fields.
 - How do MHD and ionization effects impact corrosion

Identification of Grand Science Challenges Provided the Scientific Foundation for the Evaluation Examples for Taming the Plasma-Materials Interface

- P1. Understand and mitigate synergistic damage from intense fusion neutron and plasma exposure.
 - How does the coupling of intense heat flux, high temperature, and associated thermal gradients provide failure modes for plasma facing components?
- P2. Understand, predict and manage the material erosion and migration that will occur in the month-to-year-long plasma durations required in FNSF/DEMO devices, due to plasmamaterial interactions and scrape-off layer plasma processes.
 - Can the boundary plasma and plasma-material interface be sufficiently manipulated to ensure that year-long erosion does not exceed the material thickness ~5-10 mm anywhere in the device?

Plasma-material interactions are multiscale and interactive

Readiness levels identify R&D gaps between the present status and any level of achievement, for a particular concept. They help to identify which steps are needed next.

Contribution of major facilities to PMI science and technology issues

Red: TRL 1-3 issues Yellow: TRL 4-6 issues

Green: TRL 7-9 issues

ITER FNSF Demo

Major Science & technology issues: Plasma-Material Interactions

Facility Plasma test stands Non-DT confinement: Non-DT confinement: non- inductive, low T inductive, low T		Non-DT confinement: non- inductive, high T ITER: DT, inductive, low T		FNSF: DT, non-inductive, high T	DEMO			
Divertor + Wall PMI								
Quiescent plasma heat/energy exhaust	13. Sheath heat transmission, basica parallel plasma physics	35. Non-stationary T, but possible high parallel power loading at small size	35. Varying P/S ~ 0.2 - 1 MW/m2, activley cooled water	36. Varying P/S ~ 0.5 - 1 MW/m2, activley cooled with gas, constant T	45. Power density P/S~0.2 MW/m2,at reactor size, water cooled	7 - 8. Power density P/S~1 MW/m2, peak <10 MW/m2 one year /w neutron damage		
Transient plasma heat exhaust	13. Surface response > 0.1 MJ/m2	45. Disrup	tion/ELM dynamics, too low W/S<	:0.02 MJ/m2	57. Enery density W/S ~0.5 MJ/m2 in ~ms, pulsed	67. Energy density W/S~0.5 MJ/m2 for one year	78. Energy density W/S~1.5 MJ/m2 for one year	
Erosion control	13. Sputter yield + morphology evolution	45. Cumulative erosion < 10 microns/year, local measurement rates + plasma Te reduction for control	46. Cumulative erosion per shu erosio	ot > micron> cumulative yearly n ~ mm	45. Erosion at reactor size, W/C divertor, pulsed	78. Peak divertor erosion < 5- 10 mm/year, main-wall erosion < mm /year		
Dust and redeposit control	13. Response of redeposits to plasma load, dust transport	34. Basics of dust production and transport, redeposit properties	45. Basics of dust production and transport, redeposits at cumulative depths > 0.1-1 mm	46. Basics of dust production > 0.1-1 mm with T > 500 C	45. Deposits at reactor size, T<200 C	 <10-100 kg mobile dust, no disrupting UFOs from deposits after one year (~1e4 kg eroded) 		
Tritium fuel retention	14. Implantation & permeation from RT to > 500 C	3. High recycling but low and varying T	34. High recycling with constant low T	46. High recycling with constant high T	45. Beryllium or carbon at low T, reactor-level inventory	78. < 1 kg retained tritium per year, T>500 C		
Fueling, burn fraction & ash control		34. Helium confinement, transport, de-enrichment		45. Helium recycling control with hot W + surface morphology (fuzz)	46. Fueling at reactor size, divertor He ash exhaust required	78. <10% density variation, burn fraction > 1%, core He < 10% for one year		
Integrated viability of PMI with core plasma		35. Core contamination, Zeff	36. Erosion and power control a P/S ~ 1	at non-inductive densities towards MW/m2	45. Inductive scenario with low T walls	67. Robust non-inductive low-Q scenario near density limit & heat removal limit	78. Robust non-inductive high- Q scenario near density limit & heat removal limit	
Integrated viability of PMI + nuclear damage effects	4. Irradiated sample testing	Irradiated sample testing				67. <10 dpa radiation damage, ~30 TJ/m2 convected energy	78. >10 dpa radiation damage, > 30 TJ/m2 convected energy	

The numbers in the table cells refer to estimated TRLs

Contribution of major facilities to PFC development

							Demo
Facility	test stands and design studies	Short pulse toroidal devices; upgraded test stands	Non-nuclear SS Toroidal Devices	ITER and ITER TBM	PFC test device and/or Blanket Test Stand	FNSF	DEMO
Device Requirements for PFC Development							
Understand power flow, predict heat loads	2 edge modeling, development of new diagnostics	3 edge modeling, deployment of new diagnostics	5 better models, new diagnostics, more power	4 improved edge modeling, ITER H and D plasmas	materials for diagnostics in IFMIF	7 predictive models, right plasma edge (need rad-hard diag.)	8 confirm peformance for DEMO size & power
Relevant divertor size (area ratio to FW)	3 design studies	?4 MAST Super-X divertor experiment	5 EAST or other	3 ITER plasmas, wrong divertor	?6 PFC Test Device	7 right configuration, based on modeling	8 confirm peformance for DEMO size & power
DEMO relevant disruption mitigation	3 modeling, design studies	4 improved models, DIII- D experiments	5 improved techniques, experiments	6 ITER plasmas, system information, wrong edge plasma	?6 PFC Test Device	7 solution with right plasma	8 confirm peformance for DEMO size & power
Representative edge (density; parallel power flux)	3 modeling, design studies	4 improved models, experiments	5 better models, higher power	4 ITER plasmas, system information, wrong edge plasma	76 PFC Test Device	7 solution with right plasma	8 confirm peformance for DEMO size & power
Solid PFC Configuration			develop poloidal				
Relevant high temp operation	3 design studies, HHF Tests 400-600C, small mockups	4 design studies; HHF Tests 600-800C; hot wall tiles	5 400-600C PFCs	some experience with recessed FW	NA	8 relevant operation, confirm performance	8 preferred, optimized mat. & tempertures
DEMO relevant launchers, mirrors, etc.	2 modeling, design studies	3 better models & designs, HHF experiments	5 mature designs, deployed units, confirm performance	4 ITER plasmas, system information, wrong edge plasma	?6 PFC Test Device	7 relevant operation, confirm performance	8 preferred, optimized mat. & tempertures
W-based divertor	2-3 design studies, HHF experiments	4 HHF mockups; W tiles, hot wall (C-MOD); W div EAST	5 W div East-U (higher power) & Satellites	4 W div in ITER H & D plasmas	divertor materials in IFMIF	7 relevant operation, confirm performance	8 preferred, optimized mat. & tempertures
W-based limiters, recessed or highly-shaped high temp FW	2-3 design studies, HHF experiments	4 improved models, HHF experiments	?5 deployed W lim & recessed FW	data from port plugs, FW modules	FW materialsin IFMIF	7 relevant operation, confirm performance	8 preferred, optimized mat. &
Understand PFC failure modes, predict lifetime	2-3 design studies, HHF experiments	4 improved models, HHF experiments	4 models + HHF tests, anecdotal data	anectdotal data, new failure modes	?6 PFC Test Device	6-7 real data, predictive models, benchmarks	8 mature models, optimized mat.
Demonstrate acceptable div. life	2 design studies, HHF tests 400-600C	3 improved models; HHF tests, He-600C; He- cooled div., EAST	4 hot He-cooled W div East-U (more power) & Satellites	anectdotal data	test samples with n-damage	7 real data, confirm performance, models, data 20 dpa; He-600C	8 opt. mat., confirm performance, data 50- 100 dpa; He-600C
Demonstrate acceptable life, integrated FW	2 design studies, HHF tests 400-600C	3 improved models; HHF tests, He-600C and blanket coolant	NA	anectdotal data, shaped FW	4-5 Blanket Test Stand	7 real data, confirm performance, models, data 20 dpa; He-600C	8 opt. mat., confirm performance, data 50- 100 dpa; He-600C
Liquid Divertor (with solid FW)							
Demonstrated heat removal	2 modeling, design studies	3 improved models, HHF tests small area	4-5 HHF mockups; deployed liq. divertor	NA	?5 liquid divetor test in blanket test stand	6-7design based on models, confirm	8 opt. mat., confirm performance
Integrated op., acceptable life	2 modeling, design studies	3 improved models, improved designs and materials data	4 improved design models, mat. irradiations and PIE	МА	?5 data on failures from liq. div.tests in blanket test stand	5-6 design based on models, progressive phases to confirm performance, 20 dpa	7-8 opt. mat., matue life model, 50-100 dpa
Develop/qualify divertor fabrication process	2-3 design studies;	4-6 HHF and mat tests, irrad	data, improved mat., ITER	experience & processes, o	ff-line work with vendors	7 opt. process, large	8 near commercial
Develop/qualify limiter fab process	2-3 design studies;	4-6 HHF and mat tests, irrad	. data, improved mat., ITER	experience & processes, o	7 opt. process, large material lot., good QA	8 near commercial material and OA	
							And a state of the

The numbers in the table cells refer to estimated TRLs

C	Contribution of major facilities to Materials degradation								
SC	cience a	nd tec	hnoľog	gy issi	ies	Non- nuclear	Fusion- relevant	C	
Y Q	ted: IRL fellow: TRL Green: TRL	1-3 issues 4-6 issues 7-9 issues			ITER- TBM	test stands	neutron source	FNSF	Demo
	Facility	Non-nuclear Test Stands (thermo- mechanical)	Non-nuclear Test Stands (corrosion)	Ion beams and Fission Reactors	ITER TBM	Non-nuclear Test Stands (partially integrated)	Fusion Relevant Intense Neutron Source	Fusion Nuclear Science Facility	DEMO
	First-Wall/Blanket Struct	tural & Vacuum Vesse	Materials						
	Science-based design criteria (thermo- mechanical strength)	2. Develop high temperature creep-fatigue design rules for nuclear components				4. Validate high temperature creep-fatigue design rules w/o irradiation	5. Validate irradiated high temp structural design criteria (50-150 dpa with He, stress)	7. Code qualified designs	7-8. Code qualified designs
	Explore fabrication & joining tradeoffs	2. Conventional & advanced manufacturing technologies	2. Loop tests of joints & novel fabrication approaches	2. Rad. stability of joints & novel fabrication approaches		5. Validate near prototypic fabrication and joining technology w/o irradiation	6. Validate near- prototypic fabrication & joining technology (50- 150 dpa with He, stress)	7. Demo-relevant fab processes	8. Prototypic advanced fabrication
	Resolve compatibility & corrosion issues		3. Basic and complex flow loops			5. Validate corrosion models w/o irradiation		7. Near prototypic operating environment	8. Prototypic extended operating environment
	Scientific exploration of fundamental radiation effects in a fusion relevant environment			3. Up to 150 dpa/With He, stress (ion beams, fission reactors)			6. 50 - 150 dpa/With He and stress		
	Material qualification: Structural stability in fusion environment (e.g., void swelling, irradiation creep)			3. Up to 70 dpa/no He (fission reactors)	2. Materials behavior in a low-dose, low- temp. env. (not Demo-relevant matl, <2 dpa, low temperature)		6. 50 - 150 dpa/With He and stress	7. 10 - 50 dpa, Demo prototypic environment	7-8. Prototypic operation, 50 - 150 dpa/With He/Fully Integrated
	Material qualification: Mechanical integrity in fusion environment (e.g., strength, rad resistance, lifetime)	2. Unirrad. mech. prop. data (tensile, creep, fatigue, fract. toughness, da/dN, etc)		3. Up to 70 dpa/no He (fission reactors)	2. Materials behavior in a low-dose, low- temp. env. (not Demo-relevant matl, <2 dpa, low temperature)	5. Qualify components w/o irradiation	6. 50 - 150 dpa/With He and stress	7. 10 - 50 dpa, Demo prototypic environment	7-8. Prototypic operation, 50 - 150 dpa/With He/Fully Integrated
	Fusion environment effects on tritium retention & permeation		2. Unirradiated diffusion and permeation data	3. Effect of radiation damage at Demo-relevant temperatures			6. Demo-relevant materials (up to 50-150 dpa with He at correct temp.)	7. System-scale tritium permeation and loss mechanisms	7-8. Prototypic permeation & losses

Panel Findings regarding R&D options Overarching findings

- Time to focus: Research to explore the scientific proof of principle for fusion energy (TRL>3) is most expediently accomplished by focusing research activities on the most technologically advanced option.
- Time to make selective reinvestments: Most existing US fusion technology test stands are no longer unique or world-leading. However, numerous compelling opportunities for high-impact fusion research may be achievable by making modifications to existing facilities and/or moderate investment in new medium-scale facilities.

There are several options to close the current knowledge gap in fusion-relevant radiation effects in materials

Option A: IFMIF + fission reactors +ion beams + modeling

Option B: robust spallation (MTS) + fission reactors + ion beams + modeling

Option C: modest spallation (SNS/SINQ) + fission reactors + ion beams + modeling

Panel overarching recommendations

- Now is an appropriate time to focus: As fusion nuclear science matures from concept exploration studies (TRL 1-3) to more complex proof of principle studies (TRL 4-6), it is appropriate to focus R&D on front-runner concepts.
- Moderate facility investments should be considered: Numerous fusion nuclear science feasibility issues can be effectively investigated during the next 5 to 10 years by efficient use of medium-scale facilities.
 - Several facilities, e.g. Fast neutron source, Blanket Thermofluid / Thermomechanics, Linear Plasma Device, etc. are explored in the report
- The key mission of the next step device beyond ITER should be to explore the integrated response of tritium fuel, materials and components in the extreme fusion environment in order to provide the knowledge bases to contain, conquer, harness and sustain a burning DT plasma at high temperatures.

Panel recommendations on Plasma-material interactions

- P1. Significant confinement plasma science initiatives are required to provide any confidence in the extrapolated steady and transient power loadings of material surfaces for a FNSF/ DEMO.
- P2. The leading FNSF/DEMO candidate solid material to meet the variety of PFC material requirements is tungsten.
 - Several new initiatives should be started in the near term to resolve major feasibility questions
- P3. Opportunities to access plasma pulse lengths in relevant exposure environments must be pursued in order to bridge the large gap in pulse lengths between present experiments and FNSF/DEMO.
 - Linear plasma devices and a non-nuclear PMI facility
- P4. Substantial effort in the areas of measurements (and their diagnostics) and heating/current drive systems that can survive the harsh FNSF environment should be maintained.

Panel recommendations on Material degradation

- D1. Re-engagement in the IFMIF Broader Approach Engineering Validation and Engineering Design Activity (EVEDA) should be initiated, in parallel with limited-scope neutron irradiation studies in upgraded existing spallation sources such as SINQ or SNS.
- D2. A detailed engineering design activity should begin that is closely integrated with materials research activities including ~20 dpa data from SINQ or SNS to permit selection of a prime candidate reduced activation steel for FNSF.
- D3. A robust experimental and theoretical effort should be initiated to resolve scientific questions associated with the permeation and trapping of hydrogen isotopes in neutron-irradiated materials with microstructures designed to mitigate transmutation produced helium.
- D4. Science-based high-temperature design criteria and fundamental studies of chemical compatibility in the fusion environment should be significantly enhanced.

Conclusions

- A careful focusing of breeding blanket and T₂ transport/recovery options to front-runner candidates is recommended to accelerate the development of fusion energy
- Utilization of a systems approach is important for prioritizing scope and schedule of R&D activities
- Considering the large gap in technology readiness between what will be obtained from ITER and medium-scale fusion facilities, an FNSF that focuses on the integrated response of tritium fuel, materials and components in the extreme fusion environment is recommended
 - Specific aspects of the potential vision of this facility need further analysis and research community input

PPPL comment on PFCs

- The development of neutron- and plasma-tolerant tungsten carries very significant risk.
- The development of carbon carries much higher risk than tungsten development.
- Liquid metal surfaces show great promise for avoiding the key damage issues associated with both steady and transient heat fluxes
- The development risks for liquid metal PFCs are primarily associated with PMI, MHD and re- collection of material.
- The U.S. is currently one of only a few world leaders in the development of liquid metal PFCs.
- The successful development of liquid metal PFCs would shorten, not lengthen, the development cycle for fusion power
- We recommend that this option be pursued on an equal footing with US efforts on tungsten.

Materials science strategies to improve radiation resistance may lead to enhanced tritium retention

Fig. 8 Deuterium retention in 18Cr10NiTi steel implanted to $1 \times 10^{16} \text{ cm}^{-2}$ without helium (1) and with helium to 5×10^{15} (2) and to $5 \times 10^{16} \text{ cm}^{-2}$ (3).

G.D. Tolstolutskaya et al., 12th Int. Conf. on Environmental Degradation of Materials in Nucl. Power System (TMS, 2005), p. 411

High level goal #2:

Plasma/surface interactions: establishing boundary of a fusion plasma.
 Plasma facing surface survival, renewal: cracking, annealing. Fuel retention.
 Important for industrial, non-energy applications as well

J.S. DEPARTMENT OF

ENERGY

Office of

Science

- Nuclear effects on materials and structures, including the effects of > 100 dpa on structure integrity, helium creation in situ, and time evolving properties
- Harnessing fusion power depends on the nuclear material science above and is extended to tritium breeding and extracting fusion power

This requires the launching of a vigorous materials and nuclear science program that will be part of defining and constructing a fusion nuclear science facility, and will fill gaps en route to a DEMO.

Panel statement on role of computational modeling

- Computational modeling is viewed as an essential, integral component to fusion nuclear science R&D
 - Particularly for multiple-effects phenomena associated with proof of principle research (TRL4-6), computational modeling is essential to guide and interpret experimental studies
- For the same reasons that experimental research without robust modeling is sub-optimal, computational research in isolation as a proxy to experiment is not recommended
 - The most expedient and cost-effective approach to fusion research involves careful integration of modeling, computational studies, and experimental research

Panel Findings regarding R&D options <u>Harnessing Fusion Power findings</u>

- H1, H2. The ultimate attractiveness of a fusion system depends on the performance of power extraction and tritium breeding systems that surround the plasma.
 - But, at present these systems are at a low TRL with high uncertainty as to the performance of envisioned solutions and material systems.
 - Efforts to improve current knowledge are hampered due to a lack of resources and test facilities.
- H3. The US has developed a potentially attractive family of first wall / blanket concepts
 - based on the use of Pb-Li as a breeder/coolant, separate gas cooling of reduced activation ferritic steel first wall and structure, and the use of thermal / electrical insulating inserts based on silicon carbide.

Harnessing fusion power

0

- PbLi flow is strongly influenced by MHD interaction with plasma confinement field and buoyancy-driven convection driven by spatially non-uniform volumetric nuclear heating
- Temperature and thermal stress of SiC FCI are determined by this MHD flow and convective heat transport processes
- Deformation and cracking of the FCI depend on⁻⁵
 FCI temperature and thermal stress coupled with earlylife radiation damage effects in ceramics
- Cracking and movement of the FCIs will strongly influence MHD flow behavior by opening up new
 Conduction paths that change electric current profiles
- PbLi / DCLL is a potentially attractive blanket concept developed in the US
- But, higher TRL level multi-effect and integrated interactions must be explored

poloidal coordinate

Panel Findings regarding R&D options Harnessing Fusion Power findings (continued)

- H4. Public acceptance and safety of fusion energy is strongly dependent upon the ability to reliably control the chemistry and permeation of tritium
 - (compared to fission reactors, fusion requires five orders of magnitude better control of tritium losses per unit of production).
 - ITER represents a large step forward in the handling of DEMO scale tritium flow rate, but ITER tritium systems will not be available to serve as test facilities to develop improvements still needed in processing time and system availability.
 - The ITER device does not address removal and processing of tritium from candidate breeder blanket systems.
- H5. A fully integrated and coherent US strategy to develop and utilize non-nuclear test facilities, irradiation facilities, and fusion devices to understand the engineering feasibility invessel materials and components is needed.

W Temperature & PMI are coupled

~ 600 - 700 K

~ 900 – 1900 K

> 2000 K

PISCES-A: D₂-He plasma *M. Miyamoto et al. NF (2009) 065035* 600 K, 1000 s, 2.0x10²⁴ He⁺/m², 55 eV He⁺

- Little morphology
- He nanobubbles form
- Occasional blisters

PISCES-B: mixed D-He plasma *M.J. Baldwin et al, NF 48 (2008) 035001 1200 K, 4290 s, 2x10²⁶ He⁺/m², 25 eV He⁺*

NAGDIS-II: pure He plasma N. Ohno et al., in IAEA-TM, Vienna, 2006 1250 K, 36000 s, 3.5x10²⁷ He⁺/m², 11 eV He⁺

- 100 nm (VPS W on C) (TEM)
- Surface morphology
- Evolving surface
- Nano-scale 'fuzz'

NAGDIS-II: He plasma D. Nishijima et al. JNM (2004) 329-333 1029

- Surface morphology
- Shallow depth
- Micro-scale

Evaluation of Research Options involved examination of Technology Maturity and Facility Capabilities

- Technology maturity evaluated using Technology Readiness Level (TRL) quantitative scale
 - Most fusion nuclear science is at a relatively immature TRL~3 (concept exploration stage)
 - The panel concluded optimal progress toward higher TRLs (proof of principle) is best achieved by focusing on front-runner candidates
- Facility capabilities to address knowledge gaps were examined for a broad range of scientific phenomena
 - A series of charts were constructed to quantify the contribution of different facilities to resolving knowledge gaps

Panel Findings regarding R&D options Degradation of materials & structures findings (cont'd)

- D4. Current understanding of the thermo-mechanical behavior and chemical compatibility of structural materials in the fusion environment is insufficient to enable successful design and construction of blankets for next-step plasma devices.
- D5. Disruptive advances in fabrication and joining technologies may offer new routes to high-performance materials with properties that enable construction of fusion power systems that fulfill safety, economic and environmental attractiveness goals.
- D6. The performance and economics of Magnetic Fusion Energy is significantly influenced by magnet technology.
 - There is value in continuously exploring improvements in superconducting magnet capability

Panel recommendations on Harnessing fusion power

- H1. Develop a fully integrated strategy to advance the scientific and engineering basis for power extraction and tritium breeding systems.
- H2. Examine key feasibility issues for Pb-Li blanket concepts as soon as possible
 - $-T_2$ extraction from hot Pb-Li, MHD flow effects, chemical compatibility, etc.
- H3. Predictive capabilities that can simulate time-varying temperature, mass transport, and mechanical response of blanket components and systems should be emphasized.
- H4. Near-term research should be initiated on blanket and tritium extraction systems performance and reliability with prototypic geometry and loads
 - Explore possibility of unanticipated synergistic effects

Panel Findings regarding R&D options <u>Plasma-material interactions findings</u>

- P1. Power handling on the first wall, divertor, and special plasma facing components is challenging in steady state, and is severely aggravated by non-steady loading.
 - Efforts to mitigate transient and off-normal loads are critical, requiring compromises between loading conditions, plasma operating modes, material properties optimization, design solutions, and component lifetimes.
- P2. Materials suitable for plasma facing components (PFCs) are limited and their performance in the fusion environment is highly uncertain.
 - Establishing material and design candidates will require significant efforts in experimentation and multi-scale simulation, and the coupling of plasma science, materials science, and advanced engineering and manufacturing technology.

Plasma-material interactions

- P1. Power handling on the first wall, divertor, and special plasma facing components is challenging in steady state, and is severely aggravated by non-steady loading.
- P3. Observing behavior at the plasma material interface during integrated <u>month-long plasma operation</u> AND at <u>relevant high temperatures</u> requires capabilities beyond present day and planned facilities.

Panel Findings regarding R&D options <u>Plasma-material interactions findings (continued)</u>

- P3. Observing behavior at the plasma material interface during integrated month-long plasma operation requires capabilities beyond present day and planned facilities.
 - Predicting the long-term system behavior in light of this response requires some combination of non-nuclear month-long plasma PFC/PMI linear and confinement facilities and an extensive non-nuclear (or DD) phase of FNSF in order to alleviate risk to the nuclear (DT) phase of the FNSF.
- P4. Developing measurement systems and the launching structures for plasma heating, that can survive the fusion environment, is a significant challenge.
 - A significant effort is required to establish viable materials, configurations, operating modes, and overall feasibility in the combined plasma and nuclear loading conditions expected in a FNSF.

Panel Findings regarding R&D options Degradation of materials & structures findings

- D1. The lack of an intense fusion relevant neutron source for conducting accelerated single-variable experiments is the largest obstacle to achieving a rigorous scientific understanding and developing effective strategies for mitigating neutron-induced material degradation.
- D3. Knowledge of the processes controlling tritium permeation and trapping in advanced nanostructured alloys designed to manage high levels of helium is inadequate to ensure safe operation of next-step plasma devices.