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Outline

* PFC Heat and Mass Transfer Simulation
— Tritium retention and permeation in FW/Divertor
— Helium cooling for high heat flux removal
— Thermomechanics for FW/Divertor components

e Synergistic Blanket Research

— Liquid metal MHD, heat and tritium transport
e E.g. High temperature liqguid metal loop for channel flow
 Small scale free surface and wetting experiments

— Ceramic breeder and Be thermomechanics and
tritium transport



The goal of modeling is to build an integrated multi-

e Integral physics approach (multi-physics)

physics simulation predictive capability

* Representative component geometry (instead of 1-D or surface only)

e Coupled advanced simulation (e.g. DEM + FEM for thermomechanics, MD

and Finite volume for modeling tritium transport due to surface damage
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1. Tritium concentration profiles
throughout the whole FW and coolant
Modeling tools previously developed in the US : TMAP-7 (Oct. 2004), DIFFUSE

O Initial Focused on materials: Tungsten, Beryllium

d Mechanisms (all temperature dependent):

e Implantation (implantation range, Gaussian
profile with mean range and standard deviation)
and reflection

e Recombination (enhanced by surface damage
as seen in Be)

e Erosion and dust (tritium returns to plasma through
eroded Be/Tungsten)

e Diffusion / Permeation / Thermodiffusion (Soret)

e Trap and De-trap due to ion induced defects, and
ion induced defect production (following Gaussian
implantation profile)

e Trap and De-trap due to intrinsic defects

e Trap and De-trap due to neutron damage
(trap energy), correlation between dpa and trap site

* Flux conservation at the material interfaces and solubility

e Surface topology (surface alters due to re-deposition)

 Progress is being made by comparison with the available data
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Tritium Retention and Permeation in FW/Divertor
Initially: COMSOL is used as a benchmark code to properly model the underlying physics

Later models have to be implemented in a CFD-like code in order to handle larger components
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Tungsten wall Tritium Retention and Permeation (Cont’d)

The increase of the ion-induced trap density is modeled by (Ogorodnikova, Roth, and
Mayer (2008):

dW/ _M1_ . 1] : The rate of defect creation
dt (1=l 1=-nW /W) W, : the maximum defect
Deuterium implantation profile concentration

At a lower incident flux of 3x101° m=2s!, the difference in recombination coefficient
can be reflected in concentration profile as well as the retained quantity.
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Be wall: Deuterium/tritium retention dominating
underlying physics- erosion, migration, (codeposition)

Deuterium/tritium removal from Be PFC must be included in the modeling to account
for the lower retention found in experiments. In literature, this is modeled by:

2
J r— _(2 Kr n, + U@’ Mobile atom concentration at the surface

u: erosion face velocity
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Incorporation of erosion effect allows reproducing
experimental data

Role of diffusivity: A higher diffusivity leads to a lower tritium retention

No erosion considered
? — —— Abramov et al. (1990)
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Fig. 4. Deuterium retention in beryllium exhibits only a weak dependence on increasing fluence.

Fig. 4. taken from R. P. Doerner et al./Journal of Nuclear Materials 257 (1998) p.55
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Both tritium retention and permeation into coolant from ion flux

appear low after 1001 cycles.

Arrow: Diffusive flux, cTw
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2. Helium impinging jet cooling for
high heat flux FW and Divertor

GOAL

* Study the effect of jet interactions to optimize heat transfer and pressure drop
* Access validity of various turbulence models

* Train new student in gas cooling simulations

CONSTRAINTS
* Ferritic steel temperature < 550 °C
e velocity < compressible limit (~ 500 m/s)

527 7947

* Constant flow rate when increasing jet # " o /

Concentric T-tube design

[m ]
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Comparison between simulations using MPAKN k-g and SST k-w models in SC/Tetra

Flow rates for the following simulations were kept constant and corresponded to a 250 K increase
in He inlet temperature . All jets have the same diameter.

= Jet-to-jet

interaction more
pronounced with
increasing ~
number of jets,
especially in the
k-w model

= Velocity
predictions from
both models
agree fairly well
with each other
(<5 % for most
cases) and were

& below the : S :
Results from 14, 16, 18, 20 jet c.on.1pressible Results from 14, 16, 18, 20 jet
configurations with SST k-w model limit configurations with MPAKN k-& model
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3. Thermomechanics of FW/Divertor Components: Impact of Be

tile size on finger stresses at CuCrZr heat sink for ITER
An EHF ITER FW is composed of ~40 pairs of twin fingers. In PDR design, they are
structurally locked to arm and beam through pins/lugs. Each has hypervaportron CuCrZr
heat sink. They are designed to remove a local, peak heat flux up to 4.7 MW/m?2.

) ]
10325 18488 25485 33648 41811 488.08 569.70
TEMP (C)

Stress fails 3 Sm rule
# But passes Bree diagram
Strain range too high (A 50x50x8 mm?3 Be tile
T IJLL size survives <1000 cycles)

Be surface temperature (max temp ~
" 570 C) Maximum surface heat Ioadlf?r
UCLAPFCTasks  the case shown = 3.8 MW/m?2)



Elastic Analysis -Be Tile 25x 25 x (6+2) mm3

Calculated IC (ITER Criteria)3323 equivalent strain range for a selected path from elastic
analysis give values of ~0.36% and about 5400 numbers of cyclic operations allowable
(Where Strain range = elastic strain range (Ag,) + corrections for effects of plasticity (Ag,+

Ag, + Ag,))
Fatigue
Nd ~5400
Temperature T degC 253.3
Ae(%) 0.35951586
Ae= Ag, +Ag,+Ag+Ag, 0.003595159
el 0.002735466
Ac_tot (P_tot#1) 360.94
Ne2 5.20712E-05 23
Ae_cyclic 0.000209605 et
Ae_t(%) 0.020960483 e
Ao 17.3287
AP_eff 17.3287
Pm 11.56
Pb+PL 20.17

Ae3 =(Ke-1)(Ag,+Ae -0.000696884

rercial tise on,




Transient elasto-plastic analysis was performed over 5 ITER Induction cycles,
which revealed time dependent component strain tensor behavior

The equivalent scalar strain range between the states t and t’ is calculated using the
difference between the strain tensor components at the states t and t’:

€ (t’tl) = Exx (t) — &y (t')

V2

e(t,t') =
3
Transient Results (SDC-IC B 2630)
t5400 t5800 delta_Pstrain
ep,, 6.39E-04] 1.76E-03 ep, (tt) | 1.12E-03 1.51E-03
P, -7.84E-05|-3.29€-04 cp, (t,t') |-2.50E-04
ep,, -5.60E-04]-1.43E-03 cp, (t,t') |-8.69E-04
cp,. -5.34E-05| 6.93E-04 cp. (t,t') | 7.46E-04
ep,, 5.21E-05/-6.25E-05 cp, (t,t) |-1.15E-04
cp.. 2.18E-04|-1.04E-04 cp. (tt) [-3.22E-04
t5400 t5800 delta_Estrain
€y -7.47€-04] 1.11E-03 e (tt) |1.86E-03 2.09E-03
e, 5.99E-05|-1.79E-05 e, (tt) |7.78E-05
c., 2.51E-04-5.21E-04 e (tt) |-7.72E-04
£ -5.55E-04{ 4.97E-04 e (tt) |1.05E-03
c., 6.43E-05|-8.93E-05 e (tt) |-1.54E-04
c.. 2.88E-04|-2.37E-04 e (tt) |[-5.25E-04
Total Strain Range
Elastic strain 3.59E-03
[ 1.07E-03 1.32E-03
| 2.52E-04 Similar to the elastic
analysis result
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Reducing Be tile size to 12x12x (6+2) seems not reducing the
stress enough in some region with a 4.7 MWm'2 proflle
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Post PDR box-like finger design

(less structurally constrained- no pin/lug)

Be tile (8x24x24 mm)

Laser welding Brazing  YPervapotron (HVP)

central weld L oxternal weld 7\ Coolant channel lid
(Steel 316L(N)-IG) &

Coolant outl!’ Coolant inlet

-3496 9 10905 1 30107 B44509 8589118 78114 5925165

Pressure (Pa) - d
Color code: A pressure

e Tile size: 24x24x 8 mm?3

e Similar high von Mises stress found in the
CuCrZr heat sink side wall

 Smaller tiles are needed
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Summary/Future work

e Heat and Mass Transfer PFC Activities

— Tritium retention and permeation in FW/Divertor
e Be/W sphere experiments and TMAP as benchmark
 More complex geometries

— Helium cooling for high heat flux removal

e Application to possible EAST gas cooled limiter and DEMO
relevant FW with

— Thermomechanics for FW/Divertor components
e Analysis of post PRD design



Outline

 PFC Heat and Mass Transfer Simulation
— Tritium retention and permeation in FW/Divertor
— Helium cooling for high heat flux removal
— Thermomechanics for FW/Divertor components

e Synergistic Blanket Research
— Liquid metal MHD, heat and tritium transport

e E.g. High temperature liqguid metal loop for channel flow

— Ceramic breeder and Be thermomechanics and
tritium transport



High Temperature LM loop and experiments

i AC Variacs supplying power to
” S heaters and EM pump [behind which Differential _ fi
8 Glove box =5 are EM pump and EM flow meter) Pressure m‘:_ﬂ;;j e PbLi' 400C

sensors EM cond. Pump

Electro-

15t experiment:

flow channel insert
MHD
performance

PbLi measurement
ch pan | i o Y ; and technology
AT i"* ilp__ _ "'_': - development

.._._il:l' - p—
t_ - .'J,. _---rr-l""_ s ar
b o\ carri

S Four YT e LM-MHD

e simulation
development
and coupling to
heat, tritium and
corrosion
transport

Test =ection

Press ure tabs Ports for installing UDV probes

Photograph of a newly-constructed (2011 3MHD PbLi loop at TICLA 19



Mobilization of liquid layer by body forces

e Experiments on simple systems
— JxB force, vertical on wetted layer
— JxB force, horizontal on wetted layer

— Centrifugal force, horizontal wetted foams and
wetted layers

e Simulations of Rayleigh-Taylor instabilities
with strong body forces and plasma wind



JXxB force, vertical on wetted layer

Ga-In-Sn Properties

p = 6330 kg/m3
o =3x 108 Q1 mt Ga-In-Sn Pool

v=4x 107" m?/s 11 mm long x 2 mm deep X
12 mm wide {not shown}

x = 0.55 N/m
View
perspective

I Gnd
Copper bus

0.25 mm thick x
12 mm wide {not shown}) @ B=063T



Vertical “surface normal” forces can remove excess
liquid metal from a wetted surface

— Shallow pool of liquid metal, and/or

T quid bove Henehes M L L .

or capillary restraint

Jor kA/cm?2

Mag Force/ 2.6 (0.2) 6.4 (0.5) 10.2 (0.8)
Gravity

Magnetic/ 1.7 (1.8) 4.3 (4.4) 6.8 (6.9)
ST Force

Qualitative  Some Very large Complete
Result deformation deformation detachment

2" Rise Time, 20 30 35
ms

Keeping liquid layer below solid
surface exposes edges
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Horizontal centrifugal force to
remove wetted liquid layers

Liquid metal pushed off
by centrifugal force

Sample, foams or

\ dendritic surfaces
<

Rotating device

UCLA UCLA PFC Tasks
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Excess surface layers
removed, but LM in
pores not removed

e 100 ppi W foam (Ultramet)
e Wetted Ga-In-Sn
e Max Spin/ STF ratio ~0.4

UCLA PFC Tasks



Surface heat flux

2D TE-MHD Test Case
Long thin grooves
filled with Li

400 um wide x 1 cm deep Li
channel made from 100 um thick
Molybdenum

1 MW/m?2 uniform surface heat
flux

Lithium flow driven by TEMHD
currents generated from surface
heat flux

Coupled fully developed TE-MHD
flow and heat transfer calculated

New “thin” conducting wall BC
with TE terms used to simulate
conducting wall

Molybdenum

UCLA



2D Velocity and Temperature
Profile of TEMHD driven flow

e Peak surface velocity ™
20 cm/s

e Surface temperature rise
(from bulk to surface), ™
40 K

e TE currents confined to
Hartmann boundary
layer

UCLA

Red lines indicate

—_ TE current paths
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