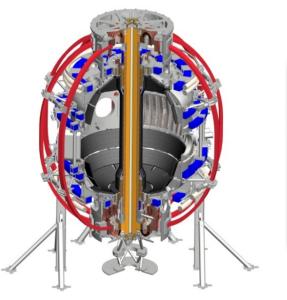


Supported by


Lithium Research on NSTX - Progress and Plans

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL **Johns Hopkins U** LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL **Princeton U** Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U Wisconsin** X Science LLC

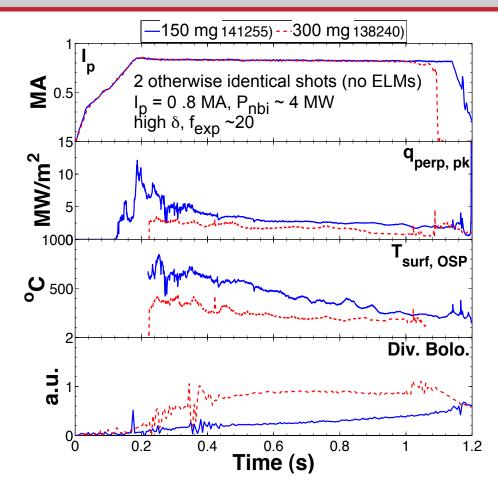
Charles H. Skinner,

Robert Kaita, Michael Jaworski, Daren Stotler and the NSTX Research Team

> PFC meeting PPPL June 20-22, 2012

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hvogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI **Chonbuk Natl U** NFR KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep

Liquid metal PFCs should be pursued to mitigate risk of tungsten not extrapolating to fusion reactor.

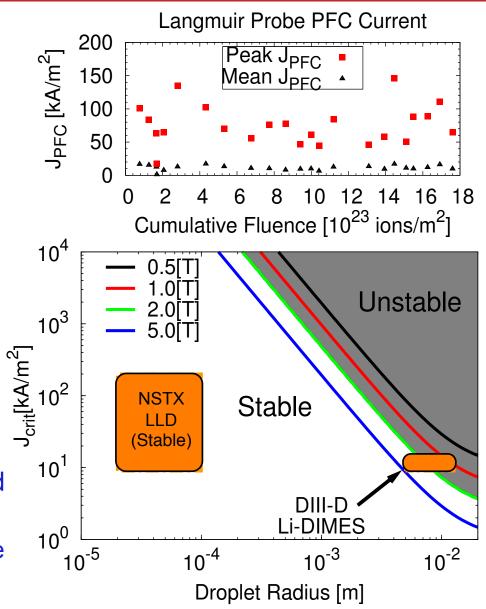

- Recent FESAC report: "The uncertainty in establishing PFC solutions is high, as the environment is severe and the requirements for long lifetime are challenging."
 - Tungsten is leading candidate but has issues with neutron damage, erosion, melting, brittleness, and thermal fatigue.
- ReNeW highlighted that DEMO PFCs are much more challenging than ITER's.
 - advocated substantial program to assess new ideas, incl. liquid metals (Li, Sn, Ga).
 - No neutron damage, erosion, thermal fatigue in liquids but technical base less mature.
- Importantly, liquid flow over tungsten substrate may be unique way to eliminate net erosion and flaking to help make tungsten work
- Liquid PFCs have potential to relieve over-constrained problem: they do not need to simultaneously satisfy plasma and nuclear loading constraints.
- Significant uncertainties in both approaches suggest both W and liquids should be investigated
- ReNeW recommended: "Liquid surface PFC operation in a tokamak environment..."

Liquid metals have the potential to mitigate steady-state and transient heat-loads, and protect underlying PFCs

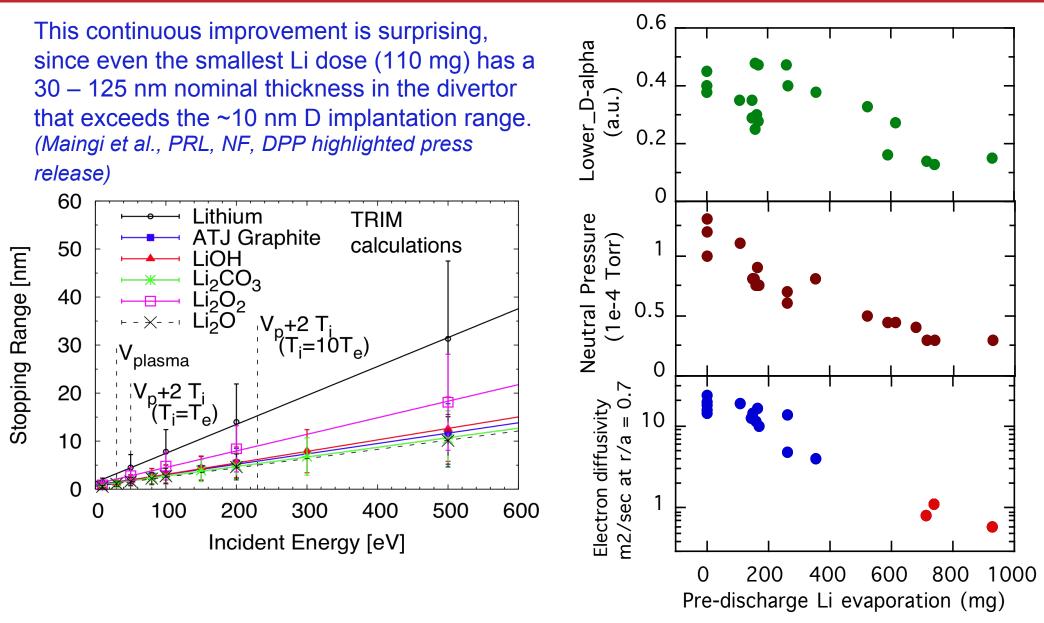
FTU capillary porous system (CPS)

- CPS in T-11 handles > 10MW/m²
 - Self-shielding radiative layers observed
- CPS e-beam tested to:
 - 25 MW/m² for 5 10 minutes
 - 50 MW/m² for 15s
- Plasma focus tested to 60 MJ/m² off-normal load

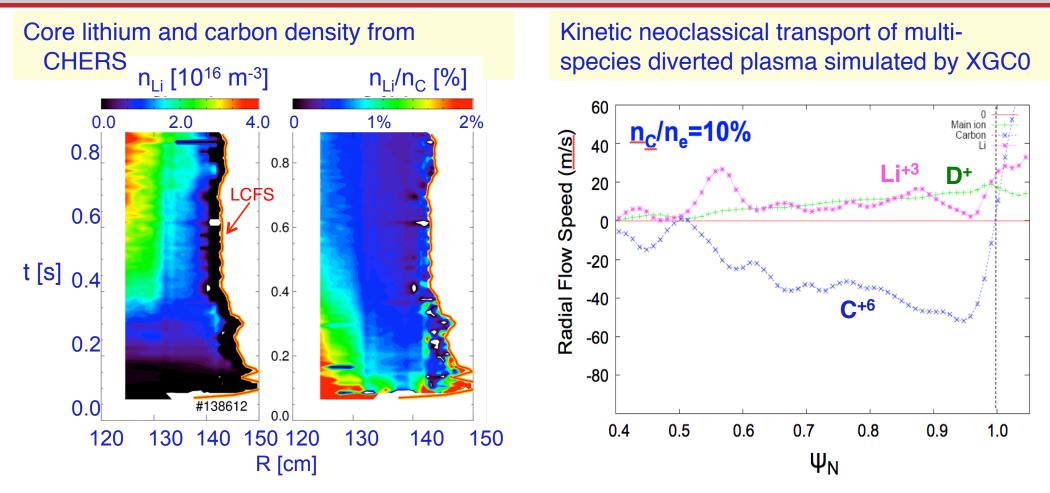
NSTX: Increased Li evaporation correlated with lower q_{pk}


- T_{surf} at OSP = 800°C → 400°C with heavy Li
- q_{pk} stays < 3 MW/m² with heavy Li, div. P_{rad} increases
- This occurs despite narrowing of heat-flux width at divertor
- Much more work to be done to understand roles of
 - C, Li radiation, detachment physics, etc.

LLD with optimized pore size and layer thickness can provide stable lithium surface


LLD surface cross section: plasma sprayed porous Mo

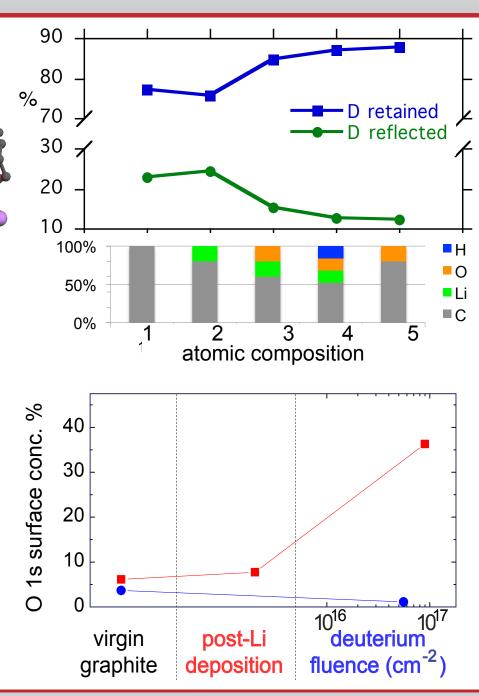
- LLD filled with 67 g-Li by evaporation, (twice that needed to fill the porosity).
- No major Mo or macroscopic Li influx observed even with strike point on LLD.
- No lithium ejection events from LLD observed during NSTX transients > 100 kA/m²
 - Thin layers and small pore diameters increase critical current (J_{crit}) for ejection.
 - Modelling consistent with DIII-D Li-DIMES ejection at 10kA/m² and NSTX experience.


M.A. Jaworski, et al., J. Nucl. Mater. 415 (2011) S985. D. Whyte, et al., Fusion Eng. Des. 72 (2004) 133.

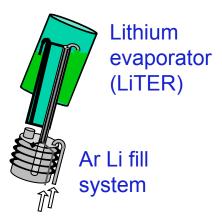
Divertor recycling, edge neutral density and electron transport all decrease monotonically with progressively increasing lithium dose

Core transport TRANSP analysis of cross-field electron diffusivity at r/a=0.7. Points > 650mg had reduced NBI.

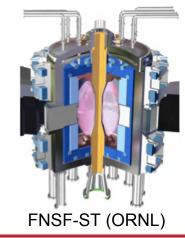
Low Li concentration in core is consistent with collisional neoclassical transport with carbon


- Many of the Li and C behaviors in NSTX can be related to neoclassical physics
 - Enhanced flux of ionized C into core
 - Inhibition of Li influx by collisions with C
 - -Similar effect seen from core-only simulation in NCLASS/MIST
 - -Reduction of C and Li ion density in pedestal from screening of influxes from scrape-off layer
 - -They can come in across the separatrix in the form of neutrals

Simulations + lab results show importance of O in Li PMI

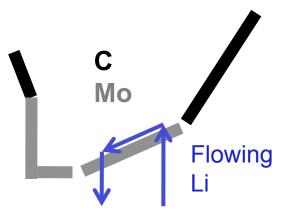

Quantum-classical atomistic simulations show that surface oxygen plays a key role in the deuterium retention in graphite. [ORNL, submitted to Nature Sci. Rep.]

- XPS measurements (*Purdue*) show that 2 µm lithium increases the surface oxygen content of lithiated graphite to about 10%.
- Deuterium ion irradiation of lithiated graphite greatly enhances the oxygen content to 20% -40%.
- In stark contrast, D irradiation of a graphite sample without lithium actually *decreases* the amount of O on the surface.
- Result explains why Li on C pumps D so effectively



PPPL is exploring lithium and liquid metals as a possible divertor solution for FNSF/Demo.

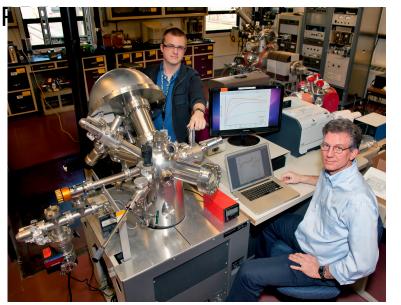
- Lithium evaporated onto NSTX PFCs achieved:
 - Reduced D-recycling,
 - Lower H-mode power threshold,
 - Broader electron temperature profiles, decreased electron thermal diffusivity and improved confinement
 - ELM suppression
 - (also positive results from LTX, FTU, T11, TFTR...)
- Short-pulse power handling with divertor strike point on lithium-filled surface successfully demonstrated by LLD.
 - Thermal response dominated by thermal mass of Cu substrate
 - No introduction of Mo or iron into plasma
- Long term potential benefits of Li for fusion include:
 - Wide area high heat flux removal through Li radiation and evaporation
 - Divertor pumping over large surface area
 - No neutron damage and erosion lifetime issues in future fusion reactors.

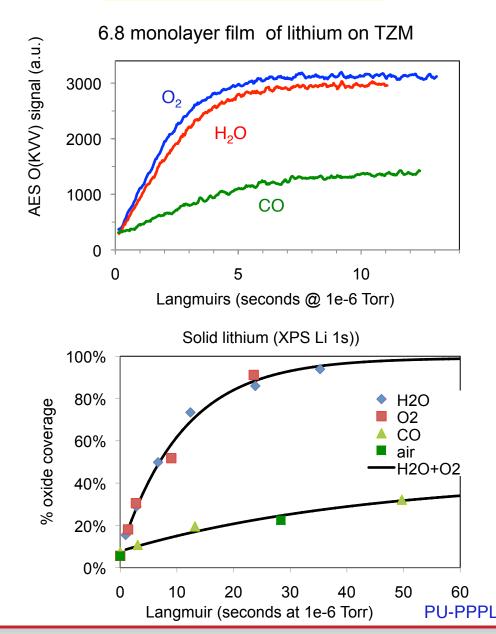


Multidisciplinary approach to developing liquid metal PFCs for NSTX-U, FNSF and beyond

Issues: Li surface reactivity, saturation & diffusion of D in Li, impurity segregation, wetting, replenishment of Li, graphite/Mo PFC substrates, heat flux limits with passive/active cooling, recovery after vents, reliability...

Multi-scale R&D approach from atoms to PFCs,


- 1. Understand impact of lithium on core and edge transport and stability.
- 2. Assess D pumping vs. surface conditions:
 - Atomistic MD modeling (ORNL)
 - Lab expt. on ideal systems e.g. single xtal Mo + monolayer Li + D⁰, D⁺ beam. detailed surface analysis via XPS, AES, TPD, SAM... (Purdue / PPPL Labs)
- 2. Assess Heat Flux handling in linear plasma facility:
 - PFC prototype tests with high power plasmas in Magnum PSI
- 3. Tokamak integration:
 - XGC Kinetic modeling, non-equilibrium Li radiation
 - LTX liquid Li studies, MAPP -> LTX then NSTX-U
 - Li granule injector tests on EAST, then NSTX-U
 - Divertor Li-PFC design, then testing in NSTX-U.


PPPL/PU collaboration shows lithium reacts quickly with residual gases

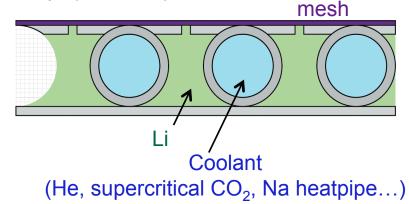
New Surface Analysis Labs at

- Surface analysis experiments show PFC oxide coverage is expected in 10s of seconds from residual H₂O at typical NSTX intershot pressures ~1e-7 torr.
- Plasma facing surface after Li evaporation is a mixed material rather than 'lithium coating'.
- Short reaction times motivate flowing Li PFCs

Li surface oxidation time

Lab-based R&D on liquid metal technology will inform long term PFC decisions:

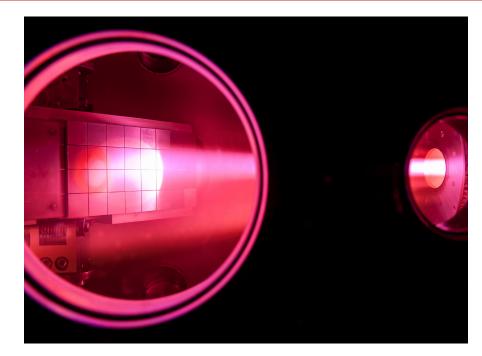
Pre-NSTX-U restart R&D initiated by PPPL:


- 1. Laboratory studies of D uptake as a function of Li dose, C/Mo substrate, surface oxidation, wetting...
- 2. Tests of prototype of scalable flowing liquid lithium system (FliLi) at PPPL and on HT7 →
- 3. Basic liquid lithium flow loop on textured surfaces
- 4. Analysis and design of actively-cooled PFCs with Li flows due to capillary action and thermoelectric MHD
- 5. Magnum-PSI tests have just begun

Thin flowing Li film in FLiLi (Zakharov)

- Four proposals on Li-PFCs submitted to OFES Materials Solicitation to extend above work.
- International collaboration proposal with evaluation of liquid lithium PFCs for long pulse discharges in EAST submitted.

Soaker hose capillary porous system concept (Goldston)


Prototype Li-PFC materials testing at Magnum-PSI

NSTX-U PFCs (ATJ, TZM (Mo), W) is being tested with and without Li coatings at NSTX-U pulse lengths and power levels with extensive diagnostics

Planned investigations:

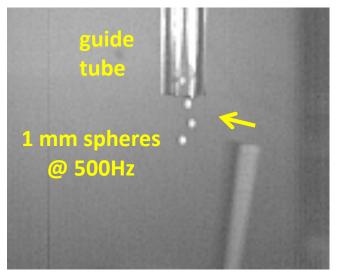
- Li coating lifetime
- Hydrogenic recycling/retention as a function of exposure time & temperature.
- Erosion, migration, impurity production with and without lithium.

[LTX is providing all-metal-wall tokamak for complementary investigations of Li chemistry, temperature, thickness... (see previous talk)]

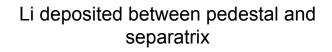
Magnum-PSI parameters relevant to NSTX-U

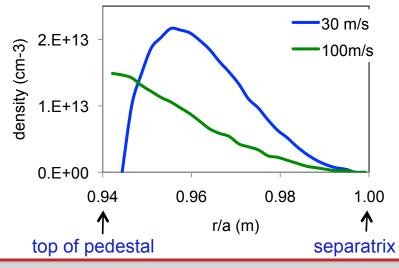
- 1.4 T for 12 s
- 10 MW/m²
- N_e~ 1.2x10²⁰ m⁻³
- $T_e \sim 3 \text{ eV}$
- Bias ≤ 100 V
- Extensive diagnostics

NSTX/EAST lithium collaborations


EAST is only other divertor H-mode facility using Li

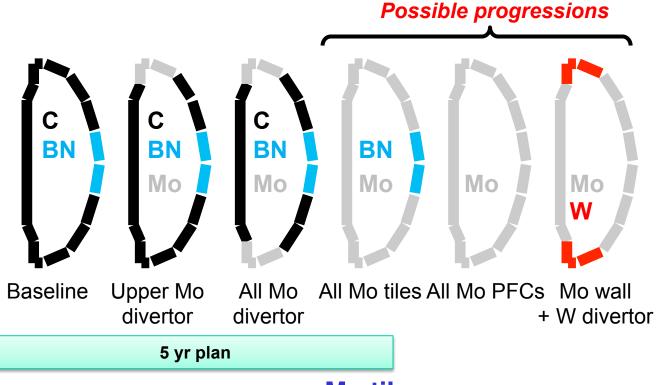
- NSTX Li powder dropper achieved 1st H mode on EAST and drastically reduced MHD (in backup).
- 2nd dropper being built by ASIPP.
- Li granule injector to be installed on EAST midplane
 will be used to trigger ELMs and control MHD


Plans:


- Assess interplay between cryo-pumping and lithiumization, and high- Z PFC interactions/synergies with lithium
- Study effects of Li on thermal and particle transport, further develop sustained/long-pulse lithium delivery systems (Li injector, dropper)

Continuous Li delivery may be essential for long pulses.

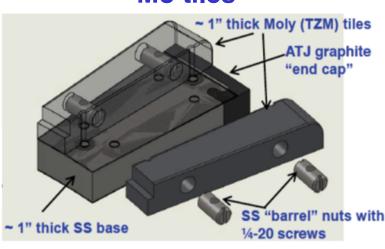
Lithium granules injected using 95 m/s "impeller"



13

NSTX-U plan to transition to full metal coverage

- Developing PFC plan to transition to full metal coverage for FNSF-relevant PMI development
- Wall conditioning: GDC, Li and / or boron coatings
- PFC bake-out at 300-350°C
- PCS control of divertor coils
- Non-axisymmetric control coils



Mo tiles

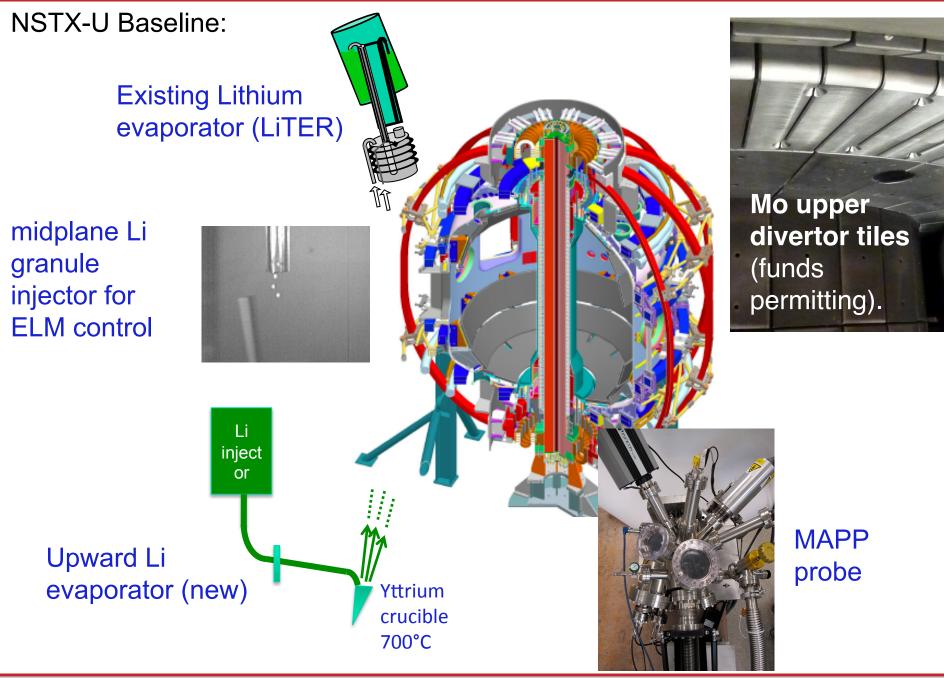
- Near-term: NBI and edge gas injection (including SGI) with PCS feedback control
- Divertor impurity gas seeding
- Longer term: pellet, molecular cluster, compact toroid injectors

V. Soukhanovskii PAC-31 talk

Fueling tools:

ullet

Preliminary erosion modeling of Mo tiles shows low sputtering and plasma contamination


- WBC modeling of SOLPS background plasma
- Debye (normal sheath) model near self-sputtering limit, grazing sheath model acceptable

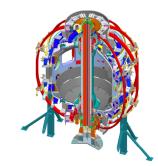
Parameter	Reference sheath model (Debye-only)	Alternative sheath model (Magnetic+Debye)	
Mean free path ^a , mm	0.24	0.58	
Charge state ^c	3.1	1.8	
Energy ^c , eV (standard deviation. eV)	491 (303)	213 (212)	
D ⁺ sputtering fraction	0.47	0.77	
Self-sputtering fraction	0.53	0.23	
Sputtered Mo current/incident D ⁺ current	9.6x10-⁴	3.6x10 ⁻⁴	
Sputtered Mo to core plasma	-0-	-0-	
Peak gross erosion rate, nm/s	5.2	2.8	
Peak net erosion rate, nm/s	0.46	0.23	

J. Brooks

Lithium capabilities planned for NSTX-U operation

NSTX-U Plan for Years 1-5 of operation:

- Year 1-2:
 - Test Li evaporation for pumping longer pulse duration NSTX-U plasmas.
 - Test Li evaporation to upper vessel by evaporator/injector, He diffusion, electrostatic sprayer.
 - Assess impact of full wall Li coverage on pumping, confinement.
 - Test ELM control by midplane Li granule injector.
 - Test Li-PFC prototypes on Magnum PSI and possibly LTX or EAST.
- Year 2:
 - Down select to best flowing Li-PFC concepts.
 - Test on Magnum PSI and LTX or EAST.
- Year 3-5:
 - Test flowing Li-PFC on at least one toroidal sector of NSTX-U, possibly full toroidal coverage system, pending lab-based tests and modelling.


Summary:

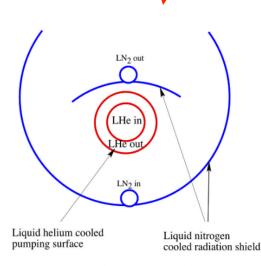
- Li PFCs have demonstrated promise for
 - Superior plasma performance
 - High heat flux handling
 - May solve PFC neutron damage and erosion issues in FNSF and demo.
- High confidence implementation requires R&D on:
 - Surface chemistry
 - Off-line heat flux tests of PFC prototypes
 - Tokamak integration
- Staged approach in place from atomistic simulations & lab experiments to test stands, LTX, EAST collaborations, leading to Li-PFC implementation in NSTX-U

Backup:

Liquid metals provide possible solution for "first wall" problem in fusion reactors

- Liquid metals can simultaneously provide:
 - Elimination of erosion concerns
 - Wall is continuously renewed
 - Absence of neutron damage
 - Substantial reduction in activated waste
 - Compatibility with high heat loads
 - Potential for handling power densities > 25 MW/m²
- Offers solution to near-term problems with solids:
 - Liquid lithium shown to protect substrates for capillary-porous systems and plasma-sprayed Liquid Lithium Divertor
 - No high-Z impurities when limiter and divertor surfaces placed in contact with plasma

General design similar to DIII-D lower outer cryo-pump system is taken as starting point for design analysis


J. Canik PAC-31 talk

- Plenum location studied: under new baffling structure near secondary passive plates, possibly replacing some outer divertor plates and tiles
- Pumping capacity of a toroidal liquid He cooled loop (Menon, NSTX Ideas Forum 2002)
 - S=24,000 l/s @ R=1.2m
 - Need plenum pressure of 0.83 mtorr to pump beam input (10MW~20 torr-I/s)
- Pumping rate:

NSTX

$$I_{pump} = P_{pl}S = \frac{I_0}{S+C}S$$

- $P_{pl} = plenum pressure$
- $-I_0$ = neutral flux into plenum
- C = throat conductance
- To optimize, need C(g,h), $I_0(g,h)$

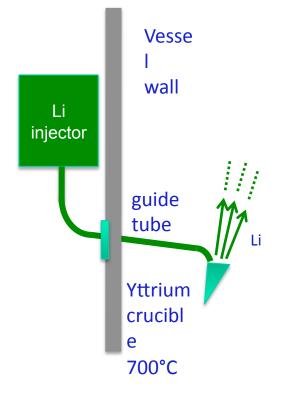
g = throat height h = throat length

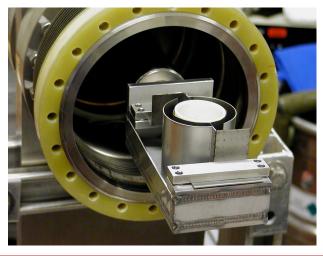
Baffle

Crvo

Cross-section of the pump (10 cm outer dia.)

- A promising cryo-pump design point has been identified that is compatible with standard and snowflake divertors
 - Based on semi-analytic pumping model
 - Divertor profile projections based on NSTX data
- D inventory control using lithium coatings appears to extrapolate to 5s NSTX-U discharges
 - Estimated recycling coefficient remains low at R~0.9 for 1 s discharges
 - D inventory in ELMy plasmas controlled ~25 s following LITER shutoff
- Studying compatibility and interplay between cryo-pumping and lithium is an important research goal for NSTX-U


Concept combines Dropper and Li crucible technology


- drop ~ 200 mg of Li granules into yttria crucible at 700°C seconds before discharge.
- all Li promptly evaporated to upper vessel.

Advantages:

- no shutters
- minimal reactions with residual gases
- controllable Li dose
- small source collimation avoid RF antenna
- combines mature technologies
- Testing, installation details in progress.

 Y_2O_3 crucible, Ta heater tested to 700 °C on LTX

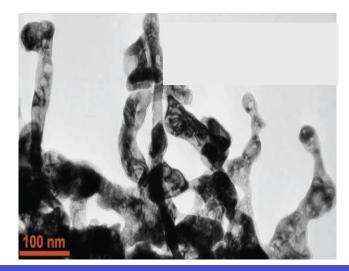
Molten lithium by plasma bombardment coincided with reduced fueling efficiency and higher target T_e

0.14 10 Mid-run experiments indicated fueling efficiency drop _ine Density [× 10¹⁵cm^{-2.} 0.12 when $T_{LLD} > T_{Li,melt}$ 8 at 0.5s [-] 0.1 Increases in both bulk T_a as well as tail fraction 6 0.08 consistent w/ absorbing surface N_e/N_{e, D2} á 0.06 4 Fueling efficiency decreased about 50%, but multi-0.04 2 variable experiment (increased gas with increased 0.02 Fueling Efficiency Core **Density** surface temperature) 0 0 200 240 280 Mid-Run Impact energies lower than earlier estimates T_{LLD, DBIR 0.5-0.6s}[C] Bulk Population Temp. [eV] TRIM runs indicate little penetration Т_{II 0}=184 С 12 T_{11D}=224 C Motivates flowing system to mitigate continual 8 gettering during vacuum exposure 4 0 t Electron Fraction [eV] Potential [V or eV] 40 12 20 8 4 Hot Energy I 0 0 40 0 30 10 20 Density [10¹⁹m⁻³] -20 0.98 0.97 0.99 H.W. Kugel, et al., Fusion Eng. Des. 2011 in press. Ψ_N [-] M.A. Jaworski, et al., Fusion Eng. Des. 2012, in press.

Main Research Needs for Implementing Liquid Metal Plasma Facing Components

- Need 1: Demonstrate stability of the liquid metal (LM) surface $\sqrt{(LLD)}$
 - Design against ejection events and substrate exposure.
 - Near-term strategy: Emphasize capillary-restrained schemes
- Need 2: Establish control over the in-vessel inventory of liquid metal
 - Control evaporation and condensing surface locations and material collection
 - Near-term strategy: Leverage existing active cooling technologies for thermal control while developing next-step schemes
- Need 3: Develop adequate means of maintaining the liquid metal
 - Perform efficient purification and establish robust operation and maintenance
 - Near-term strategy: Learn from IFMIF EVEDA and develop robust, maintainable systems from day 1
- Need 4: Understand plasma response and physics of LM-PFC
 - Develop descriptive and prescriptive models for the SOL/PMI of LM-PFCs
 - Near-term strategy: Validate fluid and kinetic codes and databases against available linear-machine data as well as tokamak database
- Develop engineered, LM-PFC modules to a significant technological maturity for implementation in NSTX-U and/or other devices

NSTX divertor conditions in 2010 vs. Magnum-PSI

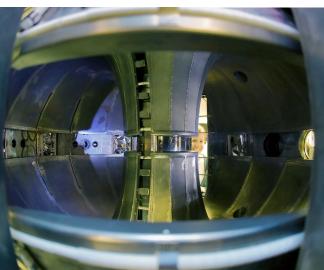

Parameter	Magnum design	Pilot achieved	Pulsed CA source design	NSTX discharges with heavy lithium (Liquid Lithium Divertor)
Power [kW]	270	100	3500	4 MW NBI
Pressure source [Pa]	104	10 ⁴		
Pressure target [Pa]	<3	1-10		~0.1-1
Ti target [eV]	0.1-10	0.1-5		1-50?
Te target [eV]	0.1-10	0.1-5	~10	1-15 (non-Maxwellian)
Ni target [m ⁻³]	10 ²⁰ -10 ²¹	10 ²¹	~2x10 ²²	5x10 ²⁰ at SP
Ion flux target [m ⁻² s ⁻¹]	10 ²⁴ -10 ²⁵	2x10 ²⁵		2x10 ²³ at SP
Power flux target [MW m ⁻²]	10	30	2000	2-5 at ~5 deg. incl.
B [T]	1.4 <mark>(3)</mark>	1.6	1.6	0.6
Beam diameter [cm]	10-1.5	1.5	2.0	~4cm FWHM
Pulse length [s]	12 (ss)	4	0.0005	1s
Extra heating [kW]	50	0	0	NA
Target size [cm]	60x12	2.5	2.5	Order~10cm
Bias [V]	-100 < V _{target} < 0			-20 < V _{floating} < 20

M. Jaworski

Need to mitigate damage to tungsten resulting from long-term exposure to plasma

Example: NAGDIS-II: pure He plasma

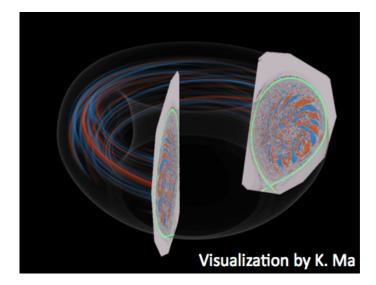
- N. Ohno et al., in IAEA-TM, Vienna, 2006
- Bombardment with 3.5×10^{27} He⁺/m² at E_{ion} = 11 eV for t = 36,000 s


<u>100 nm</u> (VPS W on C) (TEM)

• Structures appear on scale of tens of nm and reflect swelling due to "nanobubbles"

LTX is complementary all-metal tokamak; investigations of Li chemistry, temperature, thickness...

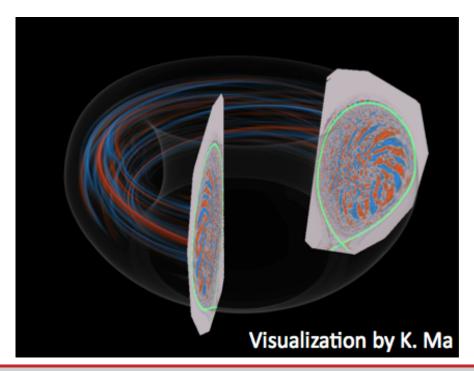
- Now: Liquid lithium limiter experiments
 - Insertable lithium-filled dendritic tungsten limiter
 - 120 cm² area, can be heated to 500 C
 - Monitored with fast framing camera, spectroscopy
 - Investigate plasma-surface interactions, Li influx vs. temperature, confinement effects
- Soon (few weeks):
 - Thick (>100 micron) evaporated films on upper heated liner
 - Liquid area 3,000 5,000 cm²
 - Investigate confinement, electron temperature profile modifications
- ~ May:
 - Few hundred cm³ pool of liquid lithium in the lower shells
 - Electron-beam stirred (Marangoni, TEMHD effects)
 - Investigate liquid metal flows in magnetic fields up to 0.3T (late FY12)
 - Investigate confinement with 5 m² liquid lithium boundary (85% of plasma surface)
 - Electron temperature profile modifications, lithium influx with full liquid metal boundary


LTX is providing all-metal-wall tokamak investigating Li chemistry, temperature, thickness...

- Lithium Tokamak Experiment has: 1. 120 cm² Li-filled dendritic W limiter heatable \leq 500 C
 - 2. Thick (>100 micron) evaporated Li films on 3,000 5,000 cm² upper heated liner
 - 3. Few hundred cm³ pool of liquid Li in the lower shells (total $\leq 85\%$ of plasma surface)
- Will investigate plasma-surface interactions, Li influx vs. temp., confinement, Te profile, liquid metal flows in B fields up to 0.3T
- Materials Analysis and Particle Probe (MAPP) will be used first on LTX in support of NSTX milestone R(13-2): "Investigate relationship between lithium-conditioned surface composition and plasma behavior" and transferred to NSTX-U later.
- MAPP's innovative design enables sample exposure to plasma and inter-shot surface analysis.

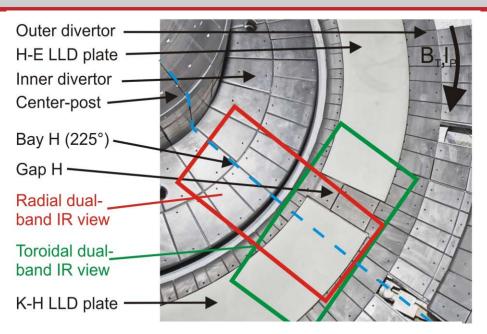
Short term plan (2012-2014)

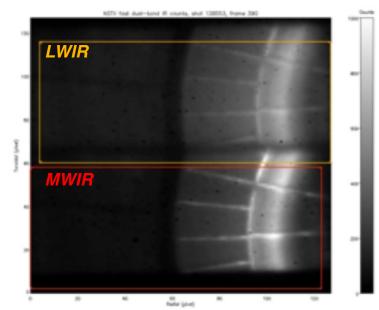
- Neoclassical Li-physics simulation with XGC0 + DEGAS2
 - Self-consistent "kinetic" plasma modeling capability
 - successor to fluid plasma codes B2-EIRENE, UEDGE-DEGAS2 et al.,
 - Non-equilibrium Li radiation, non-Maxwellian electrons (see backup #23).
 - Includes effect of Mo impurities, compared to C
 - Effect of Li influx on pedestal and plasma behavior
- Long term plan (2015-2018)
- Neoclassical-turbulence Li simulation in XGC1 + DEGAS2
 - Add self-consistent turbulence to the above
 - Adapt the code geometry to Magnum-PSI for Li radiation simulation validation
 - Study Li issues under 3D RMPs



XGC1 simulation of ITG turbulence in separatrix geometry

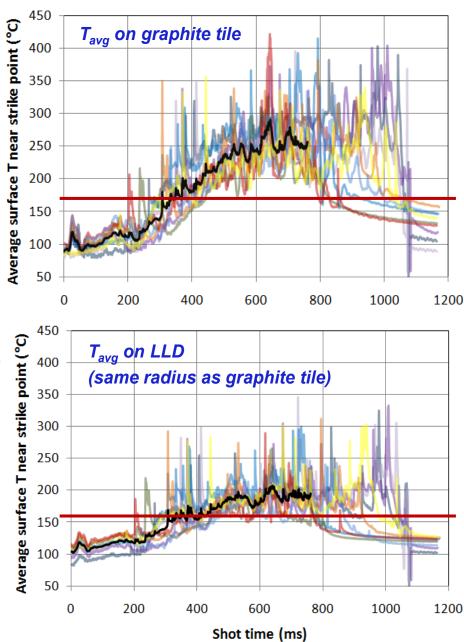
SciDAC-3 Project "Partnership for Edge Physics Simulation" (EPSI) Will Provide Simulation Capabilities Vital to NSTX-U


- Center for Edge Physics Simulation (EPSI) new multi-institution collaborative project selected for funding (C.S. Chang, PI),
 - Would run through ~2017 if funded.
 - Building on capabilities from SciDAC-2 Center for Edge Plasma Simulation (2005-2011).
 - Will allow necessary upgrade of XGC1, concurrently with extreme scale computing development using ASCR collaboration
- Main objectives are to study: edge turbulence, L-H transition, pedestal structure, RMP suppression of ELMs, edge and wall effect on core, heat & particle loads to wall, etc
- Use first principles, kinetic codes to study multi-scale & multi-physics self-organization
 - Plasma turbulence, transport & RMP: XGC
 - Neutrals, wall and atomic physics: DEGAS2 (built into XGC)
 - ELMs: M3D, M3D-C1, BOUT++ (coupled simulation with XGC)

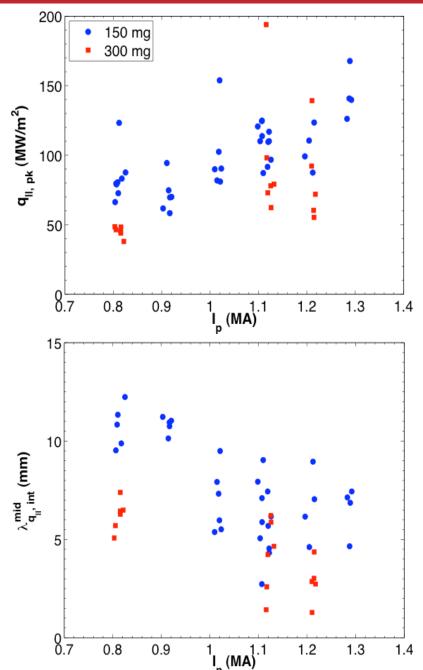


The Dual-Band IR Camera Allows Measurement of Divertor Surface Temperature with Variable Surface Emissivity

- The addition of lithium complicates the measurement of divertor surface temperature, T_{surf}
 - Lithium and Carbon are eroded and redeposited constantly through out the discharge
 - Surface emissivity is unknown
- 2 different IR wavelength bands are imaged simultaneously
 - Santa Barbara Focal Plane ImagIR camera
 - $1.6 6.3 \text{ kHz}, 1.5 11 \mu \text{m}, 128 \text{x} 128 \text{ pixels}$
 - MWIR: 7 10 μm
 - LWIR: 10 13 μm
- The ratio of the 2 bands yields T_{surf}
- Once T_{surf} is known, heat flux is calculated using a 2D finite difference heat conduction code (THEODOR)


Raw Dual Band IR Image data

Average T_{surf} on LLD and graphite tile at equal radii suggests that T_{surf} is reduced due to improved heat removal through the LLD Cu


- Series of 10 repeat discharges with outer strike point on the LLD
 - Graphite and LLD in this case begin with T_{surf} ~70°C
- T_{avg} on graphite gap tile increases through all shots in √t fashion
 - Average T_{surf} of ~250°C
- T_{avg} plotted at same radius, but on LLD
 - $-T_{surf}$ increases more slowly
 - Efficient heat removal through LLD depth/ Cu
- However during transients such as ELMs, $T_{IID} > T_{ATI}$ during the transient
 - Measured T_{surf} response is dominated by thin film on the upper surface during transients [K Gan, APS 2011]

Peak Divertor Heat Flux and inter-ELM λ_q are reduced when 300 mg of Li Evaporation is Used on NSTX

- Both deposited and parallel divertor heat flux is reduced when 300 mg of Li is evaporated
- $\lambda_{q, int}$ contracts with increased Li deposition
 - Trend is not predicted by current SOL width models
 - Suggests the importance of including divertor recycling in estimations of λ_{α}
- SOLPS modeling is in progress to better understand divertor physics

🔘 NSTX