DIII-D Boundary and Pedestal Experimental Plan for 2012

T. Leonard, presented by C. Wong General Atomics

PFC annual meeting PPPL, June 20-22, 2012

Overall Plan for Boundary and Pedestal Research in 2012

ELM control

- Develop the physics basis for utilizing ELM control in ITER
- Examine techniques; 3D fields (RMP), Pellet ELM pacing, QH-mode, I-mode

Pedestal Physics

- Pedestal structure; Identify Kinetic Ballooning Modes (KBM) regulating local pressure gradient
- Examine the role of edge recycling fueling of density pedestal; Based on physics models determine fueling requirements (pellets) for ITER

Boundary Plasma

- Divertor heat flux width; Radial transport processes determining peak heat flux
- Divertor shaping; Examine Super-X and Snowflake divertor configurations

Materials

Test models for erosion, re-deposition and migration of high-Z and low-Z materials

ELM control Experiments

• QH-mode

- Sustained operation with ITER relevant parameters; High β , low input torque, NTV driven velocity shear
- Other issues to address; EHO mode control, ECH dominant heating, SOL and divertor modification

Pellet ELM pacing

- Pellet ELM pacing dependence on Power/Power_{LH}, shape, q₉₅, torque
- Combine rapid pellets with HFs fueling
- Piggyback; Minimum size pellet penetration for ELM triggering

I-mode

- Define operating space in LSN, Rev. B_t
- I-mode with ECH and FW comparison with C-Mod

NTV: Neoclassical toroidal viscous EHO: Edge harmonic oscillation

Pedestal Physics Experiments

Pedestal evolution

- Utilize slow ELM evolution to measure a number of pedestal structure processes; 1) Turbulence, 2)Pedestal top inward propagation, 3) Bootstrap current, 4) Density rise vs. fueling
- Repeat shots with scans of power and current
- Build on 2011 JRT

High density pedestal with low fueling

- High Ip, low additional gas puffing, adequate power to maintain T_{e} pedestal
- Obtain divertor data needed for modeling
- Divertor detachment data may also be acquired (possibly with gas injection)

Emerging Heat Flux Scaling Indicates More Difficult Challenge

- New scaling predicts narrower heat flux profile than previously expected
 - ITER width projection, ~1-2 mm
 - Similar scaling from EU study, JET/AUG comparison
- Simple stability model would suggest significantly greater width in ITER
 - Ideal ballooning would suggest ~5-10 mm
- We aim to resolve these divergent views with divertor and SOL measurements
 - Examine simultaneous SOL profile and divertor heat flux scaling vs. density and power
 - Stability code analysis from high quality SOL Thomson scattering profiles

Divertor Strike-point at Large Major Radius May Mitigate Deficiencies of a Conventional Divertor Geometry

• Strike-point at large major radius

- Reduced q₁₁ for lower core density at detachment
- $-\frac{\partial \mathbf{q}_{/\!/}}{\partial \mathbf{x}_{/\!/}}$ to stabilize detachment front

Tight baffling with neutral bypass

- Confine neutrals to divertor region
- Redirect recycling neutrals for optimal radiation and stability of detachment front

Plosmo Exhoust

Cooling

Initial Tests Indicate Importance of Neutral Recycling (from two configurations)

- Initial results defied expectations at high R_{target}
- SOLPS analysis indicates results due to reduced neutral confinement at large R
 - More open divertor
 - Less poloidal flux expansion

2012 experiments to examine role of neutral in detachment onset as a function of strike-point major radius

(eV)

Snowflake configuration exhibits attractive features

- Large flux expansion to spread heat flux, steady state and ELMs
- Large divertor volume in compact configuration
 - Enhanced detachment on NSTX
- Improved pedestal stability
 - Higher core performance
 - May aid ELM control

Explore Applications of Snowflake concept in DIII-D

Snowflake shape control

- Control of multiple field nulls
- Provide protection for divertor shelf supports

Divertor detachment

- Increased connection length
- 2D geometry effects

Pedestal stability and ELMs

- Pedestal pressure dependence
- Interaction with ELM control

Plasma Material Interactions

High-Z erosion measurement

- Test of erosion/re-deposition models of Mo and W

Low-Z-erosion

 Al proxy for Be; Test erosion and migration models for ITER first wall lifetime

Piggyback, or a few dedicated shots

- Sheath power transmission
- Arcing on divertor surfaces
- Dust
- W-fuzz

ITER Langmuir probe

- Being developed between SWIP and SNL-L
- To utilize the DiMES facility for testing

