Update on PFC and PMI testing possibilities in a Plasma Material Test Station

Juergen Rapp for the PMTS team

TM Biewer, J Canik, JB Caughman, G Chen, SJ Diem, RH Goulding, DL Hillis, JD Lore, A Lumsdaine, WD McGinnis, SJ Meitner, L Owen, YKM Peng, SL Milora

Overview of the Plasma Material Test Station development at ORNL

- Background
 - ITER divertor parameters inform about goals of PMTS
 - Ensuring access to the strongly coupled PSI regime
- Plasma Material Test Station (PMTS)
 - Helicon-based source augmented by RF heating
 - ITER-relevant densities and heat fluxes appear achievable
 - High density (D), high magnetic field (He) operation demonstrated in ORNL helicon
 - Near term facility upgrades should provide research-grade plasmas

ITER: unprecedented flux and fluence

Power fluxes on target in ITER

New advanced plasma generator PMTS

Concept:

- New RF source system (Helicon wave plasma production, Electron Heating and Ion Heating) for independent control of T_e and T_i for entire divertor plasma parameter range
- High densities at target, require high plasma production in source
- R&D USER defined target station containers

Hydro-carbons and dust should be confined in plasma column at anticipated n_e , T_e , B

For plasma diameters of 5 – 10 cm

- CX processes will determine mean-free path at high density plasmas
- Confinement of hydro-carbons is ensured at high densities

- Hall factor calculated for spherical particles with diameter of 20 nm with floating potential of twice $\rm T_e$
- For temperatures higher than dashed lines, dust particles are confined
- High field of several T is necessary at target to confine dust particles with diameter of 20 nm

6 Managed by UT-Battelle for the U.S. Department of Energy

Fluxes to target at shallow angles

Sheath effects (classical Debye vs Chodura sheath)

 Investigation of melt-layer dynamics needs realistic geometry and relevant plasma pressures and fields

Fig. 1. The SEM view of the tungsten tile surface.

7 Managed by UT-Battelle for the U.S. Department of Energy Results from QSPA (plasma gun) shows bridging of gaps, but pressure is too high Erosion and Re-deposition (effect of secondary electrons on plasma sheath; gyro-motion of ions)

K. Ohya J. Nucl. Mater. 415 (2011) S10

Potential distribution from a W surface for shallow and perpendicular angle between B and surface

PMTS requirements

Parameter	Aimed value
n _e source	up to 6 x 10 ¹⁹ m ⁻³
n _e target	up to 10 ²¹ m ⁻³
T _e source	up to 35 eV
T _e target	down to 1 eV
T _i source	up to 20 eV
T _i target	down to 1 eV
B target	1 T (maybe 3 T)
Plasma diameter	up to 10 cm
Γ_{i} target	10 ²⁴ m ⁻² s ⁻¹
P target, parallel	up to 40 MW/m ²
P target, perpendicular	10 MW/m ²

With those PMTS requirements normalized PMI parameters should be within factor 2 matched to ITER values:

- D ionization mean free path / presheath thickness
- MFP of CH4 / sheath width
- MFP of W / sheath width
- Hall parameter of ions

Path to PMTS supported by strategic ORNL funding

Source development:

- Individual high density production with Helicon source and electron heating experiments
- PHIX
 - Combine helicon high density plasma production and resonant (whistler wave and Electron Bernstein wave) electron heating experiments
 - Proof of principle of PMTS source
- PHISX
 - Integrated prototype plasma source test
 - Effect of recycling at target on open system and allow a transport region to be added between the source and target (4 additional magnets) to examine creation of electron temperature and density gradients between source and target

9 Managed by UT-Battelle for the U.S. Department of Energy

Power is raised in steps to required value

Heating power in kW				
	PhIX (2s)	PHISX (2s)	PMTS	PMTS-U
Helicon	100	100	100	100-200
Whistler/EBW	20 (18 and 15.3 GHz)	200 (28 GHz)	200 (28 GHz)	200 (28 GHz)
ICH		30 - 200 (2s)	30 - 200	400
TOTAL	120	330 – 500	330-500	700-800

Results: Helicon has delivered high density deuterium plasma (> 4 x 10¹⁹ m⁻³)

Suggests that higher density is achievable at higher power

Juergen Rapp, PFC meeting, June 22nd 2012

Results: Helicon achieved high density He plasmas with high magnetic field (~0.5 T)

12 Managed by UT-Battelle for the U.S. Department of Energy

B2-Eirene results: L = 5m, source plasma r_p = 5.65 cm, P = 200kW, peak heat flux = 18MW/m², ion flux = 10²³/m²/s, χ_{\perp} = 3 m²/s, D_{\perp} = 1 m²/s

13 Managed by UT-Battelle for the U.S. Department of Energy

Juergen Rapp, PFC meeting, June 22nd 2012

PhIX (Physics Integration eXperiment)

- Investigation of production (rf-helicon) and heating of an overdense plasma by whistler and electron Bernstein waves (EBW), including:
 - ionization cost, gas utilization efficiency
 - electron heating efficiency
 - interactions between plasma production and heating regions
 - effects of target boundary on source (e.g., recycling, impurities, potential modification)

helicon antenna

(plasma production region)

whistler launcher (electron heating region)

14 Managed by UT-Battelle for the U.S. Department of Energy

lipping State:HALF SLICE

Juergen Rapp, PFC meeting, June 22nd 2012

target

rf antenna test chamber

VCOAK RIDGE National Laboratory

ORNL-ASIPP collaboration on PHISX

Schedule

- Design of parts completed
- FY 2012
 - Fabrication pf parts by ASIPP and delivery to ORNL
- FY 2013 plans
 - September: Assembly of PHISX
 - ASIPP research participation

PMI/PFC research possibilities

by end of 2013, 2014 PhIX and PHISX might allow

- Pulsed operation (2 s) with P = 4-10 MW/m²; $\Gamma_i \sim 1-4 \times 10^{23} \text{ m}^{-2} \text{s}^{-1}$
- Investigation of targets samples up to a diameter of 6 cm
- Investigation of strongly coupled PSI regime at low fluence
- Observation of pre-cursors of surface morphology changes
- Investigation of shallow angle of incidence on target
- Investigation of......

BACKUP

Initial experiments show microwave power coupling to over-dense plasma

- Density increases with the addition of 6 GHz power to above the 6 GHz cutoff density of ~4.5x10¹¹/cm³ for both whistler and EBW launch
- Electron temperature is 7 9 eV for this pressure, increases to > 10 eV at lower pressure

