

Research on PFC Heat and Mass Transfer

Presented by Neil Morley, on behalf of: A. Ying, F. C. Li, A. Kohli, H. Liu, M. A. Abdou

PFC Meeting June 20-22, 2012 PPPL, Princeton, NJ

Outline

- PFC Heat and Mass Transfer Simulation
 - Tritium retention and permeation in FW/Divertor
 - Helium cooling for high heat flux removal
 - Thermomechanics for FW/Divertor components
- Synergistic Blanket Research
 - Liquid metal MHD, heat and tritium transport
 - E.g. High temperature liquid metal loop for channel flow
 - Small scale free surface and wetting experiments
 - Ceramic breeder and Be thermomechanics and tritium transport

The goal of modeling is to build an integrated multiphysics simulation predictive capability

- Integral physics approach (multi-physics)
- Representative component geometry (instead of 1-D or surface only)
- Coupled advanced simulation (e.g. DEM + FEM for thermomechanics, MD and Finite volume for modeling tritium transport due to surface damage

1. Tritium concentration profiles throughout the whole FW and coolant

Modeling tools previously developed in the US : TMAP-7 (Oct. 2004), DIFFUSE

- Initial Focused on materials: Tungsten, Beryllium
- □ Mechanisms (all temperature dependent):
 - Implantation (implantation range, Gaussian profile with mean range and standard deviation) and reflection
 - Recombination (enhanced by surface damage as seen in Be)
 - Erosion and dust (tritium returns to plasma through eroded Be/Tungsten)
 - Diffusion / Permeation / Thermodiffusion (Soret)
 - Trap and De-trap due to ion induced defects, and ion induced defect production (following Gaussian implantation profile)
 - Trap and De-trap due to intrinsic defects
 - Trap and De-trap due to neutron damage (trap energy), correlation between dpa and trap site
 - Flux conservation at the material interfaces and solubility
 - Surface topology (surface alters due to re-deposition)
- **Progress is being made by comparison with the available data**

Tritium Retention and Permeation in FW/Divertor

Initially: COMSOL is used as a benchmark code to properly model the underlying physics Later models have to be implemented in a CFD-like code in order to handle larger components

Tungsten wall Tritium Retention and Permeation (Cont'd)

The increase of the ion-induced trap density is modeled by (Ogorodnikova, Roth, and Mayer (2008):

$$\frac{dW}{dt} = (1 - r)I \varphi(x)(1 - \eta W / W_m)$$

Deuterium implantation profile

 η : The rate of defect creation W_m : the maximum defect concentration

At a lower incident flux of $3x10^{19}$ m⁻²s⁻¹, the difference in recombination coefficient can be reflected in concentration profile as well as the retained quantity.

D retained in Ion-induced traps

Be wall: Deuterium/tritium retention dominating underlying physics- erosion, migration, (codeposition)

Deuterium/tritium removal from Be PFC must be included in the modeling to account for the lower retention found in experiments. In literature, this is modeled by:

 $J_r = -(2K_r n_o^2 + u_o)$ Mobile atom concentration at the surface

u: erosion face velocity

Incorporation of erosion effect allows reproducing experimental data

Role of diffusivity: A higher diffusivity leads to a lower tritium retention

Fig. 4. Deuterium retention in beryllium exhibits only a weak dependence on increasing fluence.

Fig. 4. taken from R. P. Doerner et al./Journal of Nuclear Materials 257 (1998) p.55

UCLA

Both tritium retention and permeation into coolant from ion flux appear low after 1001 cycles.

UCLA PFC Tasks

2. Helium impinging jet cooling for high heat flux FW and Divertor

GOAL

- Study the effect of jet interactions to optimize heat transfer and pressure drop
- Access validity of various turbulence models
- Train new student in gas cooling simulations

CONSTRAINTS

- Ferritic steel temperature < 550 °C
- velocity < compressible limit (~ 500 m/s)
- Constant flow rate when increasing jet #

Comparison between simulations using MPAKN k- ϵ and SST k- ω models in SC/Tetra

Flow rates for the following simulations were kept constant and corresponded to a 250 K increase in He inlet temperature . All jets have the same diameter.

Results from 14, 16, 18, 20 jet configurations with SST **k-ω** model

Jet-to-jet
interaction more
pronounced with
increasing
number of jets,
especially in the
k-ω model

 Velocity predictions from both models agree fairly well with each other (<5 % for most cases) and were below the compressible limit

Results from 14, 16, 18, 20 jet configurations with MPAKN **k-ε** model

3. Thermomechanics of FW/Divertor Components: Impact of Be tile size on finger stresses at CuCrZr heat sink for ITER

An EHF ITER FW is composed of ~40 pairs of twin fingers. In PDR design, they are structurally locked to arm and beam through pins/lugs. Each has hypervaportron CuCrZr heat sink. They are designed to remove a local, peak heat flux up to 4.7 MW/m².

Elastic Analysis -Be Tile 25x 25 x (6+2) mm³

Calculated IC (ITER Criteria)3323 equivalent strain range for a selected path from elastic analysis give values of ~0.36% and about 5400 numbers of cyclic operations allowable (Where Strain range = elastic strain range ($\Delta \varepsilon_1$) + corrections for effects of plasticity ($\Delta \varepsilon_2$ + $\Delta \varepsilon_2 + \Delta \varepsilon_4$))

Fatigue	
Nd	~5400
Temperature T degC	253.3
Δε(%)	0.35951586
$\Delta \varepsilon = \Delta \varepsilon_1 + \Delta \varepsilon_2 + \Delta \varepsilon_3 + \Delta \varepsilon_4$	0.003595159
Δε1	0.002735466
Δσ_tot (P_tot#1)	360.94
Δε2	5.20712E-05
Δε_cyclic	0.000209605
Δε_t(%)	0.020960483
Δσ	17.3287
∆P_eff	17.3287
Pm	11.56
Pb+PL	20.17
Δε3 =(Κε-1)(Δε ₁ +Δε ₂)	-0.000696884
Κε	0.75
Δε4= (Kv-1)∆ε₁	0.001504506
Кν	1.55
$\Delta \varepsilon = [(K_{\varepsilon} + K_{v} - 1)^{*} (\Delta \varepsilon_{1} + \Delta \varepsilon_{2})]$	0.003623798

Transient elasto-plastic analysis was performed over 5 ITER Induction cycles, which revealed time dependent component strain tensor behavior

The equivalent scalar strain range between the states t and t' is calculated using the difference between the strain tensor components at the states t and t':

$$\mathcal{E}_{xx}(t,t') = \mathcal{E}_{xx}(t) - \mathcal{E}_{xx}(t')$$
$$\frac{\mathcal{E}_{xx}(t,t') - \mathcal{E}_{yy}(t,t')}{3} \left\{ \left[\mathcal{E}_{xx}(t,t') - \mathcal{E}_{yy}(t,t') \right]^{2} + \left[\mathcal{E}_{yy}(t,t') - \mathcal{E}_{zz}(t,t') \right]^{2} + \left[\mathcal{E}_{zz}(t,t') - \mathcal{E}_{xx}(t,t') \right]^{2} + \left[\mathcal{E}_{zz}(t,t') - \mathcal{E}_{zx}(t,t') \right]^{2} + \left[\mathcal{E}_{zz}(t,t') - \mathcal{E}_{zx}(t,t') \right]^{2} + \left[\mathcal{E}_{zz}(t,t') - \mathcal{E}_{zx}(t,t') \right]^{2} + \left[\mathcal{E}_{zz}(t,t') - \mathcal{E}_{zz}(t,t') \right]^{2} + \left[\mathcal{E}_{zz}(t,t') -$$

	t5400	t5800				delta_Pstra	in
:p _{xx}	6.39E-04	1.76E-03	εp _{xx} (t,t')	1.12E-03		1.51E-03	
p _{vv}	-7.84E-05	-3.29E-04	εp _{vv} (t,t')	-2.50E-04			
p ₇₇	-5.60E-04	-1.43E-03	εp,,(t,t')	-8.69E-04			
p _{xv}	-5.34E-05	6.93E-04	εp _{xv} (t,t')	7.46E-04			
p _{vz}	5.21E-05	-6.25E-05	εp _{vz} (t,t')	-1.15E-04			
;p _{zx}	2.18E-04	-1.04E-04	εp _{zx} (t,t')	-3.22E-04			
	t5400	t5800				delta_Estra	in
xx	-7.47E-04	1.11E-03	ε _{**} (t,t')	1.86E-03		2.09E-03	
	5.99E-05	-1.79E-05	ε _{νν} (t,t')	-7.78E-05			
77	2.51E-04	-5.21E-04	ε ₇₇ (t,t')	-7.72E-04			
xv	-5.55E-04	4.97E-04	ε _{xv} (t,t')	1.05E-03			
	6.43E-05	-8.93E-05	ε _{νz} (t,t')	-1.54E-04			
78	2.88E-04	-2.37E-04	ε _{zx} (t,t')	-5.25E-04			
						Total Strain	Range
Elastic st	rain					3.59E	-03
	1.07E-03	1.32E-03					
					I	I I	
		2.52E-04			Simil	ar to th	e ela
					analysis result		

X component elastic strain tensor as a function of time shows expansion and shrinkage behavior

Reducing Be tile size to 12x12x (6+2) seems not reducing the stress enough in some region with a 4.7 MWm⁻² profile

Summary/Future work

- Heat and Mass Transfer PFC Activities
 - Tritium retention and permeation in FW/Divertor
 - Be/W sphere experiments and TMAP as benchmark
 - More complex geometries
 - Helium cooling for high heat flux removal
 - Application to possible EAST gas cooled limiter and DEMO relevant FW with
 - Thermomechanics for FW/Divertor components
 - Analysis of post PRD design

Outline

- PFC Heat and Mass Transfer Simulation
 - Tritium retention and permeation in FW/Divertor
 - Helium cooling for high heat flux removal
 - Thermomechanics for FW/Divertor components
- Synergistic Blanket Research
 - Liquid metal MHD, heat and tritium transport
 - E.g. High temperature liquid metal loop for channel flow
 - Ceramic breeder and Be thermomechanics and tritium transport

High Temperature LM loop and experiments

PbLi, 400C EM cond. Pump

1st experiment: flow channel insert MHD performance

PbLi measurement and technology development

LM-MHD simulation development and coupling to heat, tritium and corrosion transport

Photograph of a newly-constructed (2011) MHD PbLi loop at UCLA

Mobilization of liquid layer by body forces

- Experiments on simple systems
 - JxB force, vertical on wetted layer
 - JxB force, horizontal on wetted layer
 - Centrifugal force, horizontal wetted foams and wetted layers
- Simulations of Rayleigh-Taylor instabilities with strong body forces and plasma wind

JxB force, vertical on wetted layer

Vertical "surface normal" forces can remove excess liquid metal from a wetted surface

- Shallow pool of liquid metal, and/or
- Liquid above trenches or capillary restraint

	20 A	50 A	80 A	
J ₀ , kA/cm2	2.5	6.3	10.1	
Mag Force / Gravity	2.6 (0.2)	6.4 (0.5)	10.2 (0.8)	
Magnetic / ST Force	1.7 (1.8)	4.3 (4.4)	6.8 (6.9)	
Qualitative Result	Some deformation	Very large deformation	Complete detachment	
Rise Time, ms	20	30	35	

Keeping liquid layer below solid surface exposes edges

Horizontal centrifugal force to remove wetted liquid layers

Excess surface layers removed, but LM in pores not removed

- 100 ppi W foam (Ultramet)
- Wetted Ga-In-Sn
- Max Spin/ STF ratio ~0.4

2D TE-MHD Test Case Long thin grooves filled with Li

- 400 μm wide x 1 cm deep Li channel made from 100 μm thick Molybdenum
- 1 MW/m2 uniform surface heat flux
- Lithium flow driven by TEMHD currents generated from surface heat flux
- Coupled fully developed TE-MHD flow and heat transfer calculated
- New "thin" conducting wall BC with TE terms used to simulate conducting wall

2D Velocity and Temperature Profile of TEMHD driven flow

- Peak surface velocity ~ 20 cm/s
- Surface temperature rise (from bulk to surface), ~ 40 K
- TE currents confined to Hartmann boundary layer

