Computational Studies of Thermoelectric MHD in Molten Lithium

Davide Curreli, Wenyu Xu, Daniel Andruczyk and David N. Ruzic

Nuclear, Plasma, and Radiological Engineering Center for Plasma-Material Interactions

Contact: dcurreli@illinois.edu

Outline

• Introduction

- o Why we're studying TEMHD of liquid lithium
- \circ Flowing liquid lithium for heat removal in tokamaks
- \circ Can we flow liquid lithium with TEMHD only?
- o What can we do with computations?
- Mathematical formulation of TEMHD
- Solution of TEMHD forces for several cases of interest
	- o Two-metals junction
	- \circ Stainless steel tray filled with lithium
	- \circ Lithium inside an infinite stainless steel trench
	- \circ Lithium inside a finite-size stainless steel trench
- Coupling with the velocity field, examples of solutions

• Conclusion

Radiant heat flux on the surface of Sun is ~63 MW/m2

During transient events the divertor has to handle even higher fluxes ~100 MW/m2

Heat flux on the divertor of a tokamak at steadystate is ~5-20 MW/m2

Flowing liquid lithium for heat removal

- In order to handle these gigantic heat fluxes, liquid lithium methods have been proposed for a continuous heat removal
- \Diamond Pressure-driven (for example using a pump, SANDIA experim.)
- \Diamond Gravity-assisted methods (falling film of lithium on a inclined surface, etc.)
- \Diamond Surface-tension assisted (capillary and porous flows, FTU, TFTR)
- \Diamond Thermoelectric-MHD assisted methods

Can we flow lithium using TEMHD forces only?

Can we exploit the high B-field of a tokamak to have a selfdriven JxB flow of the molten lithium?

We're studying the possibility to drive liquid lithium on the divertor by using a self-driven TE-MHD flow

- **Temperature gradients** must be under careful control, since they govern the direction and magnitude of the TE force
- The **electrical boundary conditions** (like location of the electrical ground, charging of nearby materials, fluxes of electric charges from plasma, etc.) considerably affect the current path and must thus be known exactly
- The **sharing of electrical currents** between the plasma and the wall has to be predicted, for the management and containment of catastrophic events \rightarrow This is an open issue

Issues

Main issues related to the use of lithium for $ITER^(*)$:

(1) Material compatibilities, long-term corrosion by lithium

(2) Tritium retention

(3) Electromagnetic forces and their effects on the flowing liquid lithium divertor

→ Computational studies can aid on the evaluation of the electromagnetic forces before doing experimental tests

(*) As raised by M. Shimada, *Conference Report on the 1st International Workshop on Li-applications to Boundary Control in Fusion Devices*, Nucl. Fusion 50 (2010) 077001, and *Conference Report on the 2nd International Workshop on Lithium Applications for Fusion Devices*, Nucl. Fusion 52 (2012) 037001

Thermoelectric Magnetohydrodynamics ⁷

Ref: J. A. Shercliff, J. Fluid Mech. 91, 2, 231-251 (1979)

Thermoelectric Magnetohydrodynamics ⁸

most of the time on this problem, showing how the TE force develops for several cases of interest

Ref: J. A. Shercliff, J. Fluid Mech. 91, 2, 231-251 (1979)

PROBLEM #1 : THERMOELECTRIC PROBLEM

Thermoelectricity 10

Thermoelectric effect

- o Causes thermocouple junction voltage
- o Electric field generated by temperature gradient
- o Proportional to Seebeck coefficient (E=S*∂T/∂x)
- o Requires different material (or TE power) to provide current return path and to generate current
- o Lithium has a high Seebeck coefficient and is beneficial to fusion plasma. (low recycling, improved confinement, flat temperature profile and so on)

V. Surla et. al., J. Nucl. Mater. 415, 18 (2011)

Seebeck coefficient measurements of lithium isotopes \hat{f}

V. Surla^{a,b,*}, M. Tung^a, W. Xu^a, D. Andruczyk^a, M. Neumann^a, D.N. Ruzic^a, D. Mansfield ^b

a Center for Plasma-Material Interactions, Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA ^b Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA

Governing equations

The minimal set to see Thermoelectricity in action

$$
J=-\sigma\nabla\phi-\sigma S\nabla T
$$

Generalized Ohm

$$
q=-k\nabla T
$$

Fourier Law

 $\nabla \cdot J = 0$

 $\nabla \cdot q = 0$

Current Continuity

Simplified Heat Balance

Let's think about the classical 2-metal junction, let's keep Li&SS

PPPL, Princeton, June 20, 2012

Meaning of Thermopower *S*

X Z

Y

What happens if we change the location of the ground?

Top face heated The thermoelectricity of a SS tray uniformly filled with lithium works similarly to a thermocouple junctionLi 0.121 0.124 0.093 0.0907 0.121 0.062 0.0905 0.06 0.031 SS 0.0605 0.0295 -0.001 0.001 0.121 0.0905 20.0302 $T[K]$ X^Y 0.06 473 300 386 0.0295 $-0.001 - 0.001$ Bottom is cooled

and electrically grounded

• Current Density

- \circ The TE electrical current is generated at the interface between the two materials
- \circ The current density vectors point inward, sinking down at the center of the tray
- \circ The vectors falls perpendicular to the bottom of the tray, which is grounded

Thermoelectric JxB Specific Force acting on the lithium

Stainless steel tray filled with lithium ²⁶

Thermoelectric Magnetohydrodynamic Stirring of Liquid Metals

M. A. Jaworski, * T. K. Gray, M. Antonelli, J. J. Kim, C. Y. Lau, M. B. Lee, M. J. Neumann, W. Xu, and D. N. Ruzic Center for Plasma-Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA (Received 10 December 2009; revised manuscript received 25 January 2010; published 5 March 2010)

PPPL, Princeton, June 20, 2012

- We consider a SS trench containing the Lithium
	- o Heated on top, grounded on bottom
	- o The thermoelectric currents are generated at the Li-SS interface

• 3D picture, infinite trench

- In case of a localized heating, like a **Gaussian heating at center** along the transverse direction of the infinite trench, more complex current path are developed
- TE currents are developed at the Li-SS interface near the heated region

32 Lithium circulation with TE-MHD pumping

- In order to assess the feasibility of a pumping system for liquid lithium using TE-MHD only, we consider a 3D model of a finite-size stainless steel trench of 2.0 x 2.0 x 4.5 cm (green) comprising a SS separation plate at center (yellow)
- Liquid lithium fills the cavity up to the top
- The bottom is electrically grounded
- All the other walls are electrically insulated
- A magnetic field B is directed transversally
- The feasibility to drive liquid lithium using TE-MHD forces in this kind of system depends on the temperature gradient established

- With **heating on top and cooling on bottom**, a constant vertical gradient of temperature is developed through all the device (pointing upward)
- The **TE current density** is developed mainly in vertical direction (pointing downward), and is stronger at the two locations of the dashed ellipses in the figure
- The TE specific force is directed mainly **longitudinally in one direction** of the trench; all the liquid lithium is pushed toward the same direction
- The highest force is developed at the two extremities (dashed circles); the force is small and badly developed along the two channels

PPPL, Princeton, June 20, 2012

- The picture changes when the **cooling is at center and the heating is from the sides**
- The top side is heated thanks to the thermal flux from the plasma; all the other sides are artificially heated with auxiliary heating elements
- The **temperature gradient** is directed radially outward, from the cooled center toward the heated walls
- After that the temperature gradient is established, the liquid lithium can be pumped through the channel by TEMHD forces only
- The **magnitude** of specific force is in the $10⁵-10⁶$ N/m³/T range, i.e. 1-2 orders of magnitude more than specific gravitational force, $f_{g} \sim \rho g \sim 508 \text{ kg/m}^3$ 9.8 m/s² ~ 5x10³ N/ $m³$

Assessment of second order effects 43

$$
J=-\sigma\nabla\phi-\sigma S\nabla T
$$

Generalized Ohm

$$
q = -k\nabla T + (ST)J
$$

Fourier – Peltier Law

$$
\nabla \cdot J = 0
$$

Current Continuity

$$
\nabla \cdot q - \sigma^{-1} J \cdot J = 0
$$

Heat Balance

PPPL, Princeton, June 20, 2012

Assessment of second order effects 44

• Peltier effect

- \circ The introduction of the Peltier Heat Flux modifies the mathematical structure of the problem into a non-linear problem, solved by using Picard iteration and mixed finite elements.
- o Good convergence on the results, typically 7-8 iterations for RelTols 10^{-9}
- Joule heating
	- \circ Joule heating gives an additional source of heat in the energy balance
	- \circ The introduction of the Joule heating modifies the mathematical problem to a non-linear one, and iterative solutions must be implemented
	- \circ Picard iterations require more iterations, typical convergence in \sim 20-30 iterations with RelTols 10-9

PROBLEM #2 : INCOMPRESSIBLE FORCED FLOW

Incompressible NS forced by JxB TE force 46

• Implementation of the classical projection method based on Helmholtz-Hodge decomposition (Chorin-Temam method,1968) for the solution of the incompressible NS plus the thermoelectric TE JxB force gives instability due to turbulence at the Boundary Layer

THE FULL PROBLEM

Lithium flow inside an elongated trench

• COMSOL® allows to treat the basic physics of the TE-MHD problem almost completely (except 2nd order effects and Joule heating)

• Tests with the laminar solver exhibit a pattern with double velocity peaks near to the walls after the heated region; more tests with a classical kepsilon treatment are under analysis

- Most of the high-velocity flow is developed close to the free surface at the top
- The peak flow velocity is of the order of tens of cm/s, thus allowing a practical removal of heat from the heated region
- At high magnetic fields the thickness of the Hartmann layer *δ*=1/B(*ρν*/*σ*)1/2 becomes small and computations exhibit mesh-related challenges

PPPL, Princeton, June 20, 2012

Conclusions

- By using TEMHD, liquid metals can be flown by JxB forces in the high B-field environment of a tokamak
- Temperature gradients decide the direction and magnitude of the force, so they must be known and carefully controlled
- The electrical boundary conditions affect the current path, and all influencing parameters have to be accounted for:
	- location of the grounding
	- charging of nearby materials
	- fluxes of electric charges from plasma
	- Sharing of electrical currents between the plasma and the wall

References 50

[1] V. Surla at al., Journal of Nuclear Materials, 415, 18-22 (2011)

- [2] J. A. Shercliff, J. Fluid Mech. 91, 2, 231-251 (1979)
- [3] M. A. Jaworski et al., PRL 104, 094503 (2010)
- [4] N. B. Morley, PhD dissrtation (1994)
- [5] S. Smolentsev at al., Fusion Sci. and Technology, Vol. 50, July 2006

APPENDIX A MORE ON THE FULL PROBLEM

TEMHD flow in an infinite duct 52

- A closed duct of square sectionwas used to simulate an infinite long lithium flow in a stainless steel duct
- The lithium fluid is in a cube with 1.0cm of side
- The stainless steel is a 2.0 x 2.0 x 1.0 cm shell structure with 1.0 cm wall thickness
- The numerical convergence of the problem strongly depends on the Reynolds and Hartmann numbers
- At high magnetic fields the thickness of the Hartmann layer *δ*=1/B(*ρν*/*σ*)1/2 becomes small and computations exhibit meshrelated challenges

TEMHD flow in an infinite duct **53**

Continuity

$$
\nabla \cdot \vec{u} = 0
$$

• Navier-Stokes

 $\rho \vec{u} \cdot \nabla \vec{u} = -\nabla P + \mu \nabla^2 \vec{u} + \vec{J} \times \vec{B}$

Periodic boundary condition for inlet and outlet

 \bullet Heat transfer

 $\rho C_P \vec{u} \cdot \nabla T = \nabla \cdot (k \nabla T)$

Boundary condition: $T|_{y=0} = 473K$, $T|_{y=0.02m} = 573K$

• Current conservation

$$
\nabla \cdot \vec{j} = 0 \text{ and } \vec{j} = \sigma(-\nabla \varphi + \vec{u} \times \vec{B} - S\nabla T)
$$

Boudary condition: $y = 0$ surface grounded, other surfaces insulated

• In above equations B is assumed to be constant. S is the Seebeck coefficient of lithium.

Current density 54

- The current pattern is smaller inside the lithium part because the thermoelectric current is cancelled by MHD current.
- Most of the current flow in XY plane accordingly to the temperature gradient.

Velocity field 55

- The velocity along B exhibits the classical profile from Hartmann layer
- \bullet The SVT term modifies the classical "Hartmann" solution allowing a flow without pressure gradients forces

Lithium flow inside an elongated trench

• COMSOL® allows to treat the basic physics of the TE-

Streamlines of current density MHD problem almost completely (except 2nd order effects and Joule heating)

• A source term that represents the Seebeck effect can be added into the Ohm equation

$$
\nabla \cdot \vec{u} = 0 \qquad \nabla \cdot \vec{J} = 0
$$

$$
\vec{J} = \sigma(-\nabla \phi + \vec{u} \times \vec{B} - S\nabla T)
$$

$$
\rho \left[\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla) \vec{u} \right] = \nabla p - \mu \nabla^2 \vec{u} + \vec{J} \times \vec{B}
$$

$$
\rho C_p \left(\frac{\partial T}{\partial t} + \vec{u} \cdot \nabla T \right) = \nabla \cdot (k \nabla T)
$$

0.001 0.002 0.003 0.004

•COMSOL® simulations have been done by W. Xu

Lithium flow inside an elongated trench

- In stationary conditions a Lithium flow is developed along the trench, driven by the thermoelectric JxB force
- The flow exhibits a pattern with double velocity peaks near to the walls after the heated region
- Most of the high-velocity flow is developed close to the free surface at the top
- The peak flow velocity is of the order of tens of cm/s, thus allowing a practical removal of heat from the heated region

Surface: Velocity magnitude (m/s)

▼ 0

Features of the velocity field

Temperature field and heat removal

k-epsilon treatment of Li turbulence

 0.3

 0.25

 0.2

 0.15

 0.1

 0.05

Preliminary 3D COMSOL® simulations using the standard k-ε turbulence model reveal features similar to the laminar case

PPPL, Princeton, June 20, 2012

45 50 55
Z-direction [m]

APPENDIX B
MORE ON THE SQUARE TRAY

PPPL, Princeton, June 20, 2012

• In case of decentred heating

- \circ When the heating on top covers only partially the surface, a more complex current path of TE currents is developed
- o Most of the TE currents are generated only at the Li-SS interfaces interested by the strongest Grad-T
- Complex paths of thermoelectric forces are developed, depending on the local vectors of current density and magnetic field

